eigenmodel_mcmc {eigenmodel} | R Documentation |
Approximate the posterior distribution of parameters in an eigenmodel
Description
Construct approximate samples from the posterior distribution of the parameters and latent variables in an eigenmodel for symmetric relational data.
Usage
eigenmodel_mcmc(Y, X = NULL, R = 2, S = 1000, seed = 1, Nss = min(S,
1000), burn = 100)
Arguments
Y |
an n x n symmetric matrix with missing diagonal entries. Off-diagonal missing values are allowed. |
X |
an n x n x p array of regressors |
R |
the rank of the approximating factor matrix |
S |
number of samples from the Markov chain |
seed |
a random seed |
Nss |
number of samples to be saved |
burn |
number of initial scans of the Markov chain to be dropped |
Value
a list with the following components:
Z_postmean |
posterior mean of the latent variable in the probit specification |
ULU_postmean |
posterior mean of the reduced-rank approximating matrix |
Y_postmean |
the original data matrix with missing values replaced by posterior means |
L_postsamp |
samples of the eigenvalues |
b_postsamp |
samples of the regression coefficients |
Y |
original data matrix |
X |
original regressor array |
S |
number of scans of the Markov chain |
Author(s)
Peter Hoff
Examples
data(YX_Friend)
fit<-eigenmodel_mcmc(Y=YX_Friend$Y,X=YX_Friend$X,R=2,S=50,burn=50)
# in general you should run the Markov chain longer than 50 scans
plot(fit)
#fit<-eigenmodel_mcmc(Y=Y_Gen,R=3,S=10000)
#fit<-eigenmodel_mcmc(Y=Y_Pro,R=3,S=10000)