clustInd_kkmeans {ehymet} | R Documentation |
Kernel k-means clustering using indices
Description
Perform kernel kmeans clustering for a different combinations of indices and kernel
Usage
clustInd_kkmeans(
ind_data,
vars_combinations,
kernel_list = c("rbfdot", "polydot"),
n_cluster = 2,
true_labels = NULL,
n_cores = 1
)
Arguments
ind_data |
Dataframe containing indices applied to the original data and its first and second derivatives. See generate_indices. |
vars_combinations |
|
kernel_list |
List of kernels |
n_cluster |
Number of clusters to create |
true_labels |
Vector of true labels for validation (if it is not known true_labels is set to NULL) |
n_cores |
Number of cores to do parallel computation. 1 by default, which mean no parallel execution. |
Value
A list
containing kernel-kmeans clustering results for each configuration.
Examples
vars1 <- c("dtaEI", "dtaMEI")
vars2 <- c("dtaHI", "dtaMHI")
data <- ehymet::sim_model_ex1()
data_ind <- generate_indices(data)
clustInd_kkmeans(data_ind, list(vars1, vars2))
[Package ehymet version 0.1.0 Index]