clustInd_hierarch {ehymet} | R Documentation |
Perform hierarchical clustering for a different combinations of indices, method and distance
Description
Perform hierarchical clustering for a different combinations of indices, method and distance
Usage
clustInd_hierarch(
ind_data,
vars_combinations,
method_list = c("single", "complete", "average", "centroid", "ward.D2"),
dist_vector = c("euclidean", "manhattan"),
n_cluster = 2,
true_labels = NULL,
n_cores = 1
)
Arguments
ind_data |
Dataframe containing indices applied to the original data and its first and second derivatives. See generate_indices. |
vars_combinations |
|
method_list |
|
dist_vector |
|
n_cluster |
number of clusters to generate. |
true_labels |
Vector of true labels for validation (if it is not known true_labels is set to NULL) |
n_cores |
Number of cores to do parallel computation. 1 by default, which mean no parallel execution. |
Value
A list
containing hierarchical clustering results
for each configuration.
Examples
vars1 <- c("dtaEI", "dtaMEI")
vars2 <- c("dtaHI", "dtaMHI")
data <- ehymet::sim_model_ex1()
data_ind <- generate_indices(data)
clustInd_hierarch(data_ind, list(vars1, vars2))
[Package ehymet version 0.1.0 Index]