interpret {effectsize} | R Documentation |
Generic Function for Interpretation
Description
Interpret a value based on a set of rules. See rules()
.
Usage
interpret(x, ...)
## S3 method for class 'numeric'
interpret(x, rules, name = attr(rules, "rule_name"), transform = NULL, ...)
## S3 method for class 'effectsize_table'
interpret(x, rules, transform = NULL, ...)
Arguments
x |
Vector of value break points (edges defining categories), or a data
frame of class |
... |
Currently not used. |
rules |
Set of |
name |
Name of the set of rules (will be printed). |
transform |
a function (or name of a function) to apply to |
Value
For numeric input: A character vector of interpretations.
For data frames: the
x
input with an additionalInterpretation
column.
See Also
Examples
rules_grid <- rules(c(0.01, 0.05), c("very significant", "significant", "not significant"))
interpret(0.001, rules_grid)
interpret(0.021, rules_grid)
interpret(0.08, rules_grid)
interpret(c(0.01, 0.005, 0.08), rules_grid)
interpret(c(0.35, 0.15), c("small" = 0.2, "large" = 0.4), name = "Cohen's Rules")
interpret(c(0.35, 0.15), rules(c(0.2, 0.4), c("small", "medium", "large")))
bigness <- rules(c(1, 10), c("small", "medium", "big"))
interpret(abs(-5), bigness)
interpret(-5, bigness, transform = abs)
# ----------
d <- cohens_d(mpg ~ am, data = mtcars)
interpret(d, rules = "cohen1988")
d <- glass_delta(mpg ~ am, data = mtcars)
interpret(d, rules = "gignac2016")
interpret(d, rules = rules(1, c("tiny", "yeah okay")))
m <- lm(formula = wt ~ am * cyl, data = mtcars)
eta2 <- eta_squared(m)
interpret(eta2, rules = "field2013")
X <- chisq.test(mtcars$am, mtcars$cyl == 8)
interpret(oddsratio(X), rules = "chen2010")
interpret(cramers_v(X), "lovakov2021")
[Package effectsize version 0.8.9 Index]