effectsize.BFBayesFactor {effectsize}R Documentation

Effect Sizes

Description

This function tries to return the best effect-size measure for the provided input model. See details.

Usage

## S3 method for class 'BFBayesFactor'
effectsize(model, type = NULL, ci = 0.95, test = NULL, verbose = TRUE, ...)

effectsize(model, ...)

## S3 method for class 'aov'
effectsize(model, type = NULL, ...)

## S3 method for class 'htest'
effectsize(model, type = NULL, verbose = TRUE, ...)

Arguments

model

An object of class htest, or a statistical model. See details.

type

The effect size of interest. See details.

ci

Value or vector of probability of the CI (between 0 and 1) to be estimated. Default to 0.95 (⁠95%⁠).

test

The indices of effect existence to compute. Character (vector) or list with one or more of these options: "p_direction" (or "pd"), "rope", "p_map", "equivalence_test" (or "equitest"), "bayesfactor" (or "bf") or "all" to compute all tests. For each "test", the corresponding bayestestR function is called (e.g. rope() or p_direction()) and its results included in the summary output.

verbose

Toggle off warnings.

...

Arguments passed to or from other methods. See details.

Details

For statistical models it is recommended to directly use the listed functions, for the full range of options they provide.

Value

A data frame with the effect size (depending on input) and and its CIs (CI_low and CI_high).

Plotting with see

The see package contains relevant plotting functions. See the plotting vignette in the see package.

See Also

vignette(package = "effectsize")

Examples


## Hypothesis Testing
## ------------------
data("Music_preferences")
Xsq <- chisq.test(Music_preferences)
effectsize(Xsq)
effectsize(Xsq, type = "cohens_w")

Tt <- t.test(1:10, y = c(7:20), alternative = "less")
effectsize(Tt)

Tt <- t.test(
  x = c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30),
  y = c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29),
  paired = TRUE
)
effectsize(Tt, type = "rm_b")

Aov <- oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
effectsize(Aov)
effectsize(Aov, type = "omega")

Wt <- wilcox.test(1:10, 7:20, mu = -3, alternative = "less", exact = FALSE)
effectsize(Wt)
effectsize(Wt, type = "u2")

## Models and Anova Tables
## -----------------------
fit <- lm(mpg ~ factor(cyl) * wt + hp, data = mtcars)
effectsize(fit, method = "basic")

anova_table <- anova(fit)
effectsize(anova_table)
effectsize(anova_table, type = "epsilon")


## Bayesian Hypothesis Testing
## ---------------------------
bf_prop <- BayesFactor::proportionBF(3, 7, p = 0.3)
effectsize(bf_prop)

bf_corr <- BayesFactor::correlationBF(attitude$rating, attitude$complaints)
effectsize(bf_corr)

data(RCT_table)
bf_xtab <- BayesFactor::contingencyTableBF(RCT_table, sampleType = "poisson", fixedMargin = "cols")
effectsize(bf_xtab)
effectsize(bf_xtab, type = "oddsratio")
effectsize(bf_xtab, type = "arr")

bf_ttest <- BayesFactor::ttestBF(sleep$extra[sleep$group == 1],
  sleep$extra[sleep$group == 2],
  paired = TRUE, mu = -1
)
effectsize(bf_ttest)


[Package effectsize version 0.8.9 Index]