plot.eefAnalytics {eefAnalytics}R Documentation

A plot method for an eefAnalytics S3 object obtained from the eefAnalytics package.

Description

Plots different figures based on output from eefAnalytics package.

Usage

## S3 method for class 'eefAnalytics'
plot(x, group, Conditional = TRUE, ES_Total = TRUE, slope = FALSE, ...)

Arguments

x

an output object from the eefAnalytics package.

group

a string/scalar value indicating which intervention to plot. This must be one of the values of intervention variable excluding the control group. For a two arm trial, the maximum number of values to consider is 1 and 2 for three arm trial.

Conditional

a logical value to indicate whether to plot the conditional effect size. The default is Conditional=TRUE, otherwise Conditional=FALSE should be specified for plot based on the unconditional effect size. Conditional variance is total or residual variance from a multilevel model with fixed effects, whilst unconditional variance is total variance or residual variance from a multilevel model with only intercept as fixed effect.

ES_Total

A logical value indicating whether to plot the effect size based on total variance or within school variance. The default is ES_Total=TRUE, to plot the effect size using total variance. ES_Total=FALSE should be specified for the effect size based on within school or residuals variance.

slope

A logical value indicating whether to return the plot of random intercept (default is slope=FALSE). return other school-by-intervention interaction random slope (s) is slope=TRUE. This argument is suitable only for mstBayes and mstFREQ functions.

...

arguments passed to plot.default

Details

Plot produces a graphical visualisation depending on which model is fitted:

Value

Returns relevant plots for each model.

Examples

if(interactive()){

#### read data
data(mstData)
data(crtData)


###############
##### SRT #####
###############

##### Bootstrapped

outputSRTBoot <- srtFREQ(Posttest~ Intervention + Prettest,
                         intervention = "Intervention",nBoot=1000, data = mstData)
plot(outputSRTBoot,group=1)

##### Permutation
outputSRTPerm <- srtFREQ(Posttest~ Intervention + Prettest,
                         intervention = "Intervention",nPerm=1000, data = mstData)

plot(outputSRTPerm,group=1)


###############
##### MST #####
###############


#### Random intercepts
outputMST <- mstFREQ(Posttest~ Intervention + Prettest,
                     random = "School", intervention = "Intervention", data = mstData)
plot(outputMST)


#### Bootstrapped
outputMSTBoot <- mstFREQ(Posttest~ Intervention + Prettest,
                         random = "School", intervention = "Intervention",
                         nBoot = 1000, data = mstData)

plot(outputMSTBoot)
plot(outputMSTBoot,group=1)

#### Permutation
outputMSTPerm <- mstFREQ(Posttest~ Intervention + Prettest,
                         random = "School", intervention = "Intervention",
                         nPerm = 1000, data = mstData)
plot(outputMSTPerm)
plot(outputMSTPerm,group=1)



###############
##### CRT #####
###############

#### Random intercepts
outputCRT <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
                     intervention = "Intervention", data = crtData)
plot(outputCRT)


## Bootstrapped
outputCRTBoot <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
                         intervention = "Intervention", nBoot = 1000, data = crtData)

plot(outputCRTBoot,group=1)


##Permutation
outputCRTPerm <- crtFREQ(Posttest~ Intervention + Prettest, random = "School",
                         intervention = "Intervention", nPerm = 1000, data = crtData)

plot(outputCRTPerm,group=1)
}

[Package eefAnalytics version 1.1.1 Index]