Exam3.1 {eda4treeR} | R Documentation |
Data for Example 3.1 from Experimental Design and Analysis for Tree Improvement
Description
Exam3.1 is part of data from Australian Centre for Agricultural Research (ACIAR) in Queensland, Australia (Experiment 309).
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Sami Ullah (samiullahuos@gmail.com)
References
E.R. Williams, C.E. Harwood and A.C. Matheson (2023). Experimental Design and Analysis for Tree Improvement. CSIRO Publishing (https://www.publish.csiro.au/book/3145/).
See Also
Examples
library(car)
library(dae)
library(dplyr)
library(emmeans)
library(ggplot2)
library(lmerTest)
library(magrittr)
library(predictmeans)
library(supernova)
data(DataExam3.1)
# Pg. 28
fmtab3.3 <- lm(formula = Ht ~ Repl*SeedLot, data = DataExam3.1)
fmtab3.3ANOVA1 <-
anova(fmtab3.3) %>%
mutate(
"F value" = c(anova(fmtab3.3)[1:2, 3]/anova(fmtab3.3)[3, 3]
, anova(fmtab3.3)[4, 3]
, NA)
)
# Pg. 33 (Table 3.3)
fmtab3.3ANOVA1 %>%
mutate(
"Pr(>F)" = pf(q = fmtab3.3ANOVA1[ ,4]
, df1 = fmtab3.3ANOVA1[ ,1]
, df2 = fmtab3.3ANOVA1[4,1], lower.tail = FALSE)
)
# Pg. 33 (Table 3.3)
emmeans(object = fmtab3.3, specs = ~ SeedLot)
# Pg. 34 (Figure 3.2)
ggplot(mapping = aes(x = fitted.values(fmtab3.3), y = residuals(fmtab3.3)))+
geom_point(size = 2) +
labs(
x = "Fitted Values"
, y = "Residual"
) +
theme_classic()
# Pg. 33 (Table 3.4)
DataExam3.1m <- DataExam3.1
DataExam3.1m[c(28, 51, 76), 5] <- NA
DataExam3.1m[c(28, 51, 76), 6] <- NA
fmtab3.4 <- lm(formula = Ht ~ Repl*SeedLot, data = DataExam3.1m)
fmtab3.4ANOVA1 <-
anova(fmtab3.4) %>%
mutate(
"F value" = c(anova(fmtab3.4)[1:2, 3]/anova(fmtab3.4)[3, 3]
, anova(fmtab3.4)[4, 3], NA))
# Pg. 33 (Table 3.4)
fmtab3.4ANOVA1 %>%
mutate(
"Pr(>F)" = pf(q = fmtab3.4ANOVA1[ ,4]
, df1 = fmtab3.4ANOVA1[ ,1]
, df2 = fmtab3.4ANOVA1[4,1], lower.tail = FALSE)
)
# Pg. 33 (Table 3.4)
emmeans(object = fmtab3.4, specs = ~ SeedLot)
[Package eda4treeR version 0.6.0 Index]