ectotemp-package {ectotemp} | R Documentation |
ectotemp: Quantitative Estimates of Small Ectotherm Temperature Regulation Effectiveness
Description
Easy and rapid quantitative estimation of small terrestrial ectotherm temperature regulation effectiveness in R. ectotemp is built on classical formulas that evaluate temperature regulation by means of various indices, inaugurated by Hertz et al. (1993) <doi: 10.1086/285573>. Options for bootstrapping and permutation testing are included to test hypotheses about divergence between organisms, species or populations.
Details
ectotemp builds on work by Hertz et al. (1993, and references therein),
Christian and Weavers (1996), and Blouin-Demers and Weatherhead (2001). Users
of this package do not need to be particularly experienced in R, but are
expected to be familiar with the background, appropriate choice, and caveats
of the available functions (Hertz et al. 1993, Christian and Weavers 1996,
Wills and Beaupre 2000, Blouin-Demers and Nadeau 2005).
The aim of the ectotemp package is to facilitate easy and rapid estimation
of small, terrestrial ectotherm temperature regulation effectiveness after
data describing field-active body temperatures (Tb), environmental
(operative) temperatures (Te) and preferred temperatures (the set-
point range, Tset) have been collected. The package provides functions
for the following types of analyses:
The accuracy of temperature regulation (db) and associated descriptive statistics, which estimate the degree to which ectotherms experience body temperature outside of their set-point range;
The thermal quality of the habitat (de) and associated descriptive statistics, which estimate the degree to which environmental temperature matches the set-point range;
Choice between several approaches to calculate effectiveness of temperature regulation (E), including bootstrap resampling of the original distributions of Tb and Te to determine confidence interval for the mean, and permutation tests for between-population or species comparisons;
-
Exploitation of the thermal environment (Ex), i.e., the amount of time when field body temperatures (Tb) are within the set-point range, relative to the total amount of time during which this could have been possible as indicated by operative temperatures (Te).
Author(s)
Maintainer: Wouter Beukema wouter.beukema@gmail.com
References
Blouin-Demers, G., & Weatherhead, P. J. (2001). Thermal ecology of black rat
snakes (Elaphe obsoleta) in a thermally challenging environment.
Ecology, 82(11), 3025-3043.
Blouin-Demers, G., & Nadeau, P. (2005). The cost-benefit model of
thermoregulation does not predict lizard thermoregulatory behavior. Ecology,
86(3), 560-566.
Christian, K. A., & Weavers, B. W. (1996). Thermoregulation of monitor
lizards in Australia: an evaluation of methods in thermal biology.
Ecological monographs, 66(2), 139-157.
Hertz, P. E., Huey, R. B., & Stevenson, R. D. (1993). Evaluating temperature
regulation by field-active ectotherms: the fallacy of the inappropriate
question. The American Naturalist, 142(5), 796-818.
Wills, C. A., & Beaupre, S. J. (2000). An application of randomization for
detecting evidence of thermoregulation in timber rattlesnakes (Crotalus
horridus) from northwest Arkansas. Physiological and Biochemical Zoology,
73(3), 325-334.
See Also
Useful links: