predict.ecpc {ecpc} | R Documentation |
Predict for new samples for ‘ecpc’ object
Description
Predict the response for new samples based on an ‘ecpc’ object.
Usage
## S3 method for class 'ecpc'
predict(object, X2, X=NULL, Y=NULL, ...)
Arguments
object |
An 'ecpc' object returned by |
X2 |
Independent observed data for which response is predicted. |
X |
Observed data used in fitting the ‘object’; (nxp)-dimensional matrix (p: number of covariates) with each row the observed high-dimensional feature vector of a sample. |
Y |
Response data used in fitting the ‘object’; n-dimensional vector (n: number of samples) for linear and logistic outcomes, or |
... |
Other parameters |
Value
Vector with predicted values. Note that for Cox response, the relative risks are provided, unless training data X and Y is provided to compute the Breslow estimator.
Examples
#####################
# Simulate toy data #
#####################
p<-300 #number of covariates
n<-100 #sample size training data set
n2<-100 #sample size test data set
#simulate all betas i.i.d. from beta_k~N(mean=0,sd=sqrt(0.1)):
muBeta<-0 #prior mean
varBeta<-0.1 #prior variance
indT1<-rep(1,p) #vector with group numbers all 1 (all simulated from same normal distribution)
#simulate test and training data sets:
Dat<-simDat(n,p,n2,muBeta,varBeta,indT1,sigma=1,model='linear')
str(Dat) #Dat contains centered observed data, response data and regression coefficients
###################
# Provide co-data #
###################
continuousCodata <- abs(Dat$beta)
Z1 <- cbind(continuousCodata,sqrt(continuousCodata))
#setting 2: splines for informative continuous
Z2 <- createZforSplines(values=continuousCodata)
S1.Z2 <- createS(orderPen=2, G=dim(Z2)[2]) #create difference penalty matrix
Con2 <- createCon(G=dim(Z2)[2], shape="positive+monotone.i") #create constraints
#setting 3: 5 random groups
G <- 5
categoricalRandom <- as.factor(sample(1:G,p,TRUE))
#make group set, i.e. list with G groups:
groupsetRandom <- createGroupset(categoricalRandom)
Z3 <- createZforGroupset(groupsetRandom,p=p)
S1.Z3 <- createS(G=G, categorical = TRUE) #create difference penalty matrix
Con3 <- createCon(G=dim(Z3)[2], shape="positive") #create constraints
#fit ecpc for the three co-data matrices with following penalty matrices and constraints
#note: can also be fitted without paraPen and/or paraCon
Z.all <- list(Z1=Z1,Z2=Z2,Z3=Z3)
paraPen.all <- list(Z2=list(S1=S1.Z2), Z3=list(S1=S1.Z3))
paraCon <- list(Z2=Con2, Z3=Con3)
############
# Fit ecpc #
############
tic<-proc.time()[[3]]
fit <- ecpc(Y=Dat$Y,X=Dat$Xctd,
Z = Z.all, paraPen = paraPen.all, paraCon = paraCon,
model="linear",maxsel=c(5,10,15,20),
Y2=Dat$Y2,X2=Dat$X2ctd)
toc <- proc.time()[[3]]-tic
predictions <- predict(fit, X2=Dat$X2ctd)
[Package ecpc version 3.1.1 Index]