xt2fun {ecostatscale} | R Documentation |
Unbiased stability paramter estimation
Description
Function for solving for stability paramter values from observed time series. Equivalent to Eq.5 in the main text.
Usage
xt2fun(x0, r, d, d_sd, dt, ndist)
Arguments
x0 |
value of x^2 at time t (x(t) in Eq.5) |
r |
per-capita growth rate (r in Eq.5) |
d |
mean size of disturbance function (mu in Eq.5) |
d_sd |
standard deviation of disturbance function (sigma in Eq.5) |
dt |
time step (i.e. time between x0 and x1) - can be a vector of the same length as x0, or a number if all time steps are of equal length |
ndist |
number of disturbances in each time step (equivalent to p(t+tau) in Eq.5) - must be same length as x0 |
Value
predicted value of x^2 at time t+dt
Examples
# simulate dynamics, with r=1, d=0, and d_sd=0.1
xtout<-symdyn(r=1, f=1, d=0, d_sd=0.1, sf=0.1, tmax=100)
# abundance in current time step
x0<-xtout$state[1:(nrow(xtout)-1)]
# abundance at t+1
x1<-xtout$state[2:nrow(xtout)]
dt<-diff(xtout$time)
ndist<-xtout$disturbed[-1]
# fit model - note square root transform of response variable,
# and log transform of parameter values
mod<-nls(sqrt(x1^2)~sqrt(xt2fun(x0, r=exp(lr), d=0, d_sd=exp(ld_sd), dt, ndist)),
start=c(lr=log(1), ld_sd=log(0.1)))
exp(coef(mod)) # model estimates
[Package ecostatscale version 1.1 Index]