quantify {econet} | R Documentation |
quantify: quantification of marginal effects in linear-in-means models.
Description
quantify: quantification of marginal effects in linear-in-means models.
Usage
## S3 method for class 'econet'
quantify(object, ...)
Arguments
object |
first object in the list of outcomes returned by |
... |
other arguments |
Details
quantify
returns marginal effects for net_dep
objects when model = "model_B"
and hypothesis = "lim"
.
For additional details, see the vignette (doi:10.18637/jss.v102.i08).
Value
an object of class data.frame
listing direct and indirect variable effects (mean, standard deviation, max, min).
See Also
Examples
# Load data
data("db_cosponsor")
data("G_alumni_111")
db_model_B <- db_cosponsor
G_model_B <- G_cosponsor_111
G_exclusion_restriction <- G_alumni_111
are_factors <- c("party", "gender", "nchair")
db_model_B[are_factors] <- lapply(db_model_B[are_factors], factor)
# Specify formula
f_model_B <- formula("les ~gender + party + nchair")
# Specify starting values
starting <- c(alpha = 0.23952,
beta_gender1 = -0.22024,
beta_party1 = 0.42947,
beta_nchair1 = 3.09615,
phi = 0.40038,
unobservables = 0.07714)
# Fit Linear-in-means model
lim_model_B <- net_dep(formula = f_model_B, data = db_model_B,
G = G_model_B, model = "model_B", estimation = "NLLS",
hypothesis = "lim", endogeneity = TRUE, correction = "heckman",
first_step = "standard",
exclusion_restriction = G_exclusion_restriction,
start.val = starting)
quantify(lim_model_B)
# WARNING, This toy example is provided only for runtime execution.
# Please refer to previous examples for sensible calculations.
data("db_alumni_test")
data("G_model_A_test")
db_model <- db_alumni_test
G_model <- G_model_A_test
f_model <- formula("les ~ dw")
lim_model_test <- net_dep(formula = f_model, data = db_model,
G = G_model, model = "model_B", estimation = "NLLS",
hypothesis = "lim", start.val = c(alpha = 0.4553039,
beta_dw = -0.7514903,
phi = 1.6170539))
quantify(lim_model_test)
[Package econet version 1.0.0 Index]