boot {econet} | R Documentation |
boot: Bootstrap residuals with cross-sectional dependence
Description
boot: Bootstrap residuals with cross-sectional dependence
Usage
## S3 method for class 'econet'
boot(
object,
hypothesis = c("lim", "het", "het_l", "het_r", "par", "par_split_with",
"par_split_btw", "par_split_with_btw"),
group = NULL,
niter,
weights = FALSE,
delta = NULL,
na.rm = FALSE,
parallel = FALSE,
cl,
...
)
Arguments
object |
an object of class |
hypothesis |
string. One of |
group |
|
niter |
number of required iterations. |
weights |
logical. It is |
delta |
Default is |
na.rm |
logical. Should missing values (including |
parallel |
logical. It is |
cl |
numeric. Number of cores to be used for parallelization. |
... |
additional parameters |
Details
For additional details, see the vignette (doi:10.18637/jss.v102.i08).
Warning: This function is available only when net_dep
is run with estimation == "NLLS"
Value
a numeric vector containing bootstrapped standard errors (see Anselin, 1990). If the procedure is not feasible, it returns a vector of NAs.
References
Anselin, L., 1990, "Some robust approach to testing and estimation in spatial econometrics", Regional Science and Urban Economics, 20, 141-163.
See Also
Examples
# Load data
data("db_cosponsor")
data("G_alumni_111")
db_model_B <- db_cosponsor
G_model_B <- G_cosponsor_111
G_exclusion_restriction <- G_alumni_111
are_factors <- c("party", "gender", "nchair")
db_model_B[are_factors] <- lapply(db_model_B[are_factors], factor)
# Specify formula
f_model_B <- formula("les ~gender + party + nchair")
# Specify starting values
starting <- c(alpha = 0.23952,
beta_gender1 = -0.22024,
beta_party1 = 0.42947,
beta_nchair1 = 3.09615,
phi = 0.40038,
unobservables = 0.07714)
# object Linear-in-means model
lim_model_B <- net_dep(formula = f_model_B, data = db_model_B,
G = G_model_B, model = "model_B", estimation = "NLLS",
hypothesis = "lim", endogeneity = TRUE, correction = "heckman",
first_step = "standard",
exclusion_restriction = G_exclusion_restriction,
start.val = starting)
# Bootstrap
# Warning: this may take a very long time to run.
# Decrease the number of iterations to reduce runtime.
# If you run econet on a Windows platform, you can try to set the
# argument parallel = TRUE. However note that this option is still
# in its beta version.
boot_lim_estimate <- boot(object = lim_model_B, hypothesis = "lim",
group = NULL, niter = 10, weights = FALSE)
boot_lim_estimate