echebin {echelon} | R Documentation |
Echelon spatial scan statistic based on Binomial model
Description
echebin
detects spatial clusters using echelon spatial scan statistic based on Binomial model.
Usage
echebin(echelon.obj, cas, ctl, K = length(cas)/2, n.sim = 99,
cluster.type = "high", cluster.legend.pos = "bottomleft",
dendrogram = TRUE, cluster.info = FALSE, coo = NULL, ...)
Arguments
echelon.obj |
An object of class |
cas |
A numeric (integer) vector of case counts.
|
ctl |
A numeric (integer) vector for control counts.
|
K |
Maximum cluster size. if |
n.sim |
Number of Monte Carlo replications used for significance testing of detected clusters. If 0, the significance is not assessed. |
cluster.type |
A character string specifying the cluster type. If |
cluster.legend.pos |
A location of the legend on the dendrogram. (See the help for |
dendrogram |
Logical. if TRUE, draw an echelon dendrogram with detected clusters. |
cluster.info |
Logical. if TRUE, return the result of echelon scan statistic. |
coo |
An array of the (x,y)-coordinates of the region centroid to draw a cluster map. |
... |
Related to dendrogram drawing. (See the help for |
Value
clusters |
Each detected cluster. |
scanned.regions |
A region list of all scanning processes. |
simulated.LLR |
Monte Carlo samples of the log-likelihood ratio. |
Note
echebin
requires either cas
and ctl
.
Population is defined by the sum of cas
and ctl
.
Typical values of n.sim
are 99, 999, 9999, ...
Author(s)
Fumio Ishioka
References
[1] Kulldorff M, Nagarwalla N. (1995). Spatial disease clusters: Detection and inference. Statistics in Medicine, 14, 799–810.
[2] Kulldorff M. (1997). A spatial scan statistic. Communications in Statistics: Theory and Methods, 26, 1481–1496.
See Also
echelon
for the echelon analysis.
echepoi
for cluster detection based on echelons using Poisson model.
Examples
##Hotspot detection for non-white birth of North Carolina using echelon scan
#Non-white birth from 1974 to 1984 (case data)
library(spData)
data("nc.sids")
nwb <- nc.sids$NWBIR74 + nc.sids$NWBIR79
#White birth from 1974 to 1984 (control data)
wb <- (nc.sids$BIR74 - nc.sids$NWBIR74) + (nc.sids$BIR79 - nc.sids$NWBIR79)
#Hotspot detection based on Binomial model
nwb.echelon <- echelon(x = nwb/wb, nb = ncCR85.nb, name = row.names(nc.sids))
echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20,
main = "Hgih rate clusters", ens = FALSE)
text(nwb.echelon$coord, labels = nwb.echelon$regions.name,
adj = -0.1, cex = 0.7)
#Detected clusters and neighbors map
#XY coordinates of each polygon centroid point
NC.coo <- cbind(nc.sids$lon, nc.sids$lat)
echebin(nwb.echelon, cas = nwb, ctl = wb, K = 20,
coo = NC.coo, dendrogram = FALSE)
##Detected clusters map
#Here is an example using the sf class "sf"
nwb.clusters <- echebin(nwb.echelon, cas = nwb,
ctl = wb, K = 20, dendrogram = FALSE)
MLC <- nwb.clusters$clusters[[1]]
Secondary <- nwb.clusters$clusters[[2]]
cluster.col <- rep(0,times=length(nwb))
cluster.col[MLC$regionsID] <- 2
cluster.col[Secondary$regionsID] <- 3
library(sf)
nc <- st_read(system.file("shape/nc.shp", package = "sf"))
plot(nc$geometry, col = cluster.col,
main = "Detected high rate clusters")
text(st_coordinates(st_centroid(st_geometry(nc))),
labels = nc$CRESS_ID, cex =0.75)
legend("bottomleft",
c(paste("1- p-value:", MLC$p),
paste("2- p-value:", Secondary$p)),
text.col = c(2,3))