linear2btl {eba} R Documentation

Linear Coefficients to Bradley-Terry-Luce (BTL) Estimates

Description

Transforms linear model coefficients to Bradley-Terry-Luce (BTL) model parameter estimates.

Usage

linear2btl(object, order = FALSE)

Arguments

 object an object of class glm or lm specifying a BTL model order logical, does the model include an order effect? Defaults to FALSE

Details

The design matrix used by glm or lm usually results from a call to pcX. It is assumed that the reference category is the first level. The covariance matrix is estimated by employing the delta method. See Imrey, Johnson, and Koch (1976) for more details.

Value

 btl.parameters a matrix; the first column holds the BTL parameter estimates, the second column the approximate standard errors cova the approximate covariance matrix of the BTL parameter estimates linear.coefs a vector of the original linear coefficients as returned by glm or lm

References

Imrey, P.B., Johnson, W.D., & Koch, G.G. (1976). An incomplete contingency table approach to paired-comparison experiments. Journal of the American Statistical Association, 71, 614–623. doi: 10.2307/2285591

eba, eba.order, glm, pcX.

Examples

data(drugrisk)
y1 <- t(drugrisk[, , 1])[lower.tri(drugrisk[, , 1])]
y0 <-   drugrisk[, , 1][ lower.tri(drugrisk[, , 1])]

## Fit BTL model using glm (maximum likelihood)
btl.glm <- glm(cbind(y1, y0) ~ 0 + pcX(6), binomial)
linear2btl(btl.glm)

## Fit BTL model using lm (weighted least squares)
btl.lm <- lm(log(y1/y0) ~ 0 + pcX(6), weights=y1*y0/(y1 + y0))
linear2btl(btl.lm)


[Package eba version 1.10-0 Index]