RFEAT {eat} | R Documentation |
Random Forest + Efficiency Analysis Trees
Description
This function builds m
individual Efficiency Analysis Trees in a forest structure.
Usage
RFEAT(data, x, y, numStop = 5, m = 50, s_mtry = "BRM", na.rm = TRUE)
Arguments
data |
|
x |
Column input indexes in data. |
y |
Column output indexes in data. |
numStop |
Minimum number of observations in a node for a split to be attempted. |
m |
Number of trees to be built. |
s_mtry |
Number of variables randomly sampled as candidates at each split. The available options are:
|
na.rm |
|
Value
A RFEAT
object containing:
data
df
: data frame containing the variables in the model.x
: input indexes in data.y
: output indexes in data.input_names
: input variable names.output_names
: output variable names.row_names
: rownames in data.
control
numStop
: numStop hyperparameter value.m
: m hyperparameter value.s_mtry
: s_mtry hyperparameter value.na.rm
: na.rm hyperparameter value.
forest
:list
containing the individual EAT models.error
: Out-of-Bag error at the forest.OOB
:list
containing Out-of-Bag set for each tree.
Examples
simulated <- X2Y2.sim(N = 50, border = 0.1)
RFmodel <- RFEAT(data = simulated, x = c(1,2), y = c(3, 4), numStop = 5,
m = 50, s_mtry = "BRM", na.rm = TRUE)