EnsErrorss {easyVerification} | R Documentation |
Ensemble Mean Error Skill scores
Description
Computes various ensemble mean error skill scores.
EnsMaess
computes the mean absolute error, EnsMsess
the mean
squared error, and EnsRmsess
the square root of the mean squared
error.
Usage
EnsErrorss(ens, ens.ref, obs, type)
EnsMaess(ens, ens.ref, obs)
EnsMsess(ens, ens.ref, obs)
EnsRmsess(ens, ens.ref, obs)
Arguments
ens |
n x k matrix of n forecasts from k ensemble members |
ens.ref |
n x l matrix of m reference forecasts from l ensemble members |
obs |
n verifying observations |
type |
specifying what error metric to compute, one of [me, mae, mse, rmse] |
See Also
Examples
tm <- toymodel()
## compute RMSE skill score against reference forecast with a bias of +2
EnsErrorss(ens = tm$fcst, ens.ref = tm$fcst + 2, obs = tm$obs, type = "rmse")
## compute skill score using veriApply
veriApply("EnsRmsess", fcst = tm$fcst, obs = tm$obs, fcst.ref = tm$fcst + 2)
[Package easyVerification version 0.4.5 Index]