eafs {eaf} | R Documentation |
Exact computation of the EAF in 2D or 3D
Description
This function computes the EAF given a set of 2D or 3D points and a vector set
that indicates to which set each point belongs.
Usage
eafs(points, sets, groups = NULL, percentiles = NULL)
Arguments
points |
Either a matrix or a data frame of numerical values, where each row gives the coordinates of a point. |
sets |
A vector indicating which set each point belongs to. |
groups |
Indicates that the EAF must be computed separately for data belonging to different groups. |
percentiles |
( |
Value
A data frame (data.frame
) containing the exact representation
of EAF. The last column gives the percentile that corresponds to each
point. If groups is not NULL
, then an additional column
indicates to which group the point belongs.
Note
There are several examples of data sets in system.file(package="eaf","extdata")
. The current implementation only supports two and three dimensional points.
Author(s)
Manuel López-Ibáñez
References
Viviane Grunert da Fonseca, Carlos M. Fonseca, Andreia O. Hall (2001). “Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function.” In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello, David Corne (eds.), Evolutionary Multi-criterion Optimization, EMO 2001, volume 1993 of Lecture Notes in Computer Science, 213–225. Springer, Heidelberg, Germany. doi: 10.1007/3-540-44719-9_15.
Carlos M. Fonseca, Andreia P. Guerreiro, Manuel López-Ibáñez, Luís Paquete (2011). “On the Computation of the Empirical Attainment Function.” In R H C Takahashi, others (eds.), Evolutionary Multi-criterion Optimization, EMO 2011, volume 6576 of Lecture Notes in Computer Science, 106–120. Springer, Heidelberg . doi: 10.1007/978-3-642-19893-9_8.
See Also
Examples
extdata_path <- system.file(package="eaf", "extdata")
x <- read_datasets(file.path(extdata_path, "example1_dat"))
# Compute full EAF
str(eafs(x[,1:2], x[,3]))
# Compute only best, median and worst
str(eafs(x[,1:2], x[,3], percentiles = c(0, 50, 100)))
x <- read_datasets(file.path(extdata_path, "spherical-250-10-3d.txt"))
y <- read_datasets(file.path(extdata_path, "uniform-250-10-3d.txt"))
x <- rbind(data.frame(x, groups = "spherical"),
data.frame(y, groups = "uniform"))
# Compute only median separately for each group
z <- eafs(x[,1:3], sets = x[,4], groups = x[,5], percentiles = 50)
str(z)
# library(plotly)
# plot_ly(z, x = ~X1, y = ~X2, z = ~X3, color = ~groups,
# colors = c('#BF382A', '#0C4B8E')) %>% add_markers()