| RSM {eRm} | R Documentation | 
Estimation of rating scale models
Description
This function computes the parameter estimates of a rating scale model for polytomous item responses by using CML estimation.
Usage
RSM(X, W, se = TRUE, sum0 = TRUE, etaStart)
Arguments
X | 
 Input data matrix or data frame with item responses (starting from 0); rows represent individuals, columns represent items. Missing values are inserted as   | 
W | 
 Design matrix for the RSM. If omitted, the function will compute W automatically.  | 
se | 
 If   | 
sum0 | 
 If   | 
etaStart | 
 A vector of starting values for the eta parameters can be specified. If missing, the 0-vector is used.  | 
Details
The design matrix approach transforms the RSM into a partial credit model
and estimates the corresponding basic parameters by using CML.
Available methods for RSM-objects are print, coef, model.matrix,
vcov, summary, logLik, person.parameters, plotICC, LRtest.
Value
Returns an object of class 'Rm', 'eRm' and contains the log-likelihood value,
the parameter estimates and their standard errors.
loglik | 
 Conditional log-likelihood.  | 
iter | 
 Number of iterations.  | 
npar | 
 Number of parameters.  | 
convergence | 
 See   | 
etapar | 
 Estimated basic item difficulty parameters (item and category parameters).  | 
se.eta | 
 Standard errors of the estimated basic item parameters.  | 
betapar | 
 Estimated item-category (easiness) parameters.  | 
se.beta | 
 Standard errors of item parameters.  | 
hessian | 
 Hessian matrix if   | 
W | 
 Design matrix.  | 
X | 
 Data matrix.  | 
X01 | 
 Dichotomized data matrix.  | 
call | 
 The matched call.  | 
Author(s)
Patrick Mair, Reinhold Hatzinger
References
Fischer, G. H., and Molenaar, I. (1995). Rasch Models - Foundations, Recent Developements, and Applications. Springer.
Mair, P., and Hatzinger, R. (2007). Extended Rasch modeling: The eRm package for the application of IRT models in R. Journal of Statistical Software, 20(9), 1-20.
Mair, P., and Hatzinger, R. (2007). CML based estimation of extended Rasch models with the eRm package in R. Psychology Science, 49, 26-43.
See Also
Examples
##RSM with 10 subjects, 3 items
res <- RSM(rsmdat)
res
summary(res)                            #eta and beta parameters with CI
thresholds(res)                         #threshold parameters