eBsc-package {eBsc} | R Documentation |
Empirical Bayes Smoothing Splines with Correlated Errors
Description
Empirical Bayes smoothing splines with correlated errors. The method uses a recursive algorithm for signal extraction with a non-parametric estimation of the correlation matrix of the errors.
Details
Package: | eBsc |
Version: | 4.17 |
Date: | 2023-05-01 |
Depends: | Brobdingnag, parallel, nlme, Matrix, MASS, mvtnorm |
Index:
eBsc Empirical Bayes smoothing splines with correlated errors plot.eBsc Plots fitted curves from the filter summary.eBsc Summary information of the error
The function eBsc()
is used to fit the model. Using the resulting
eBsc
object and summary information on the errors can be printed using summary
.
Author(s)
Francisco Rosales, Paulo Serra, Tatyana Krivobokova Maintainer: Francisco Rosales <francisco.rosales-marticorena@protonmail.com>
References
Serra, P. and Krivobokova, T. (2015)
Adaptive Empirical Bayesian Smoothing Splines
See Also
stl
(package stats),
HoltWinters
(package stats)
Examples
# simulated data for non-correlated errors
library(eBsc)
n <- 250
sigma <- 0.05
beta <- function(x,p,q){
gamma(p+q)/(gamma(p)*gamma(q))*x^(p-1)*(1-x)^(q-1)
}
x <- seq(0, 1, length.out = n)
mu <- (6 * beta(x, 30, 17) + 4 * beta(x, 3, 11))/10;
mu <- (mu - min(mu))/(max(mu) - min(mu))
noise <- rnorm(n)
y <- mu + sigma * noise
#q assumed known and equal to 3, and correlation unknown
fit <- eBsc(y, method = "N", q=3)
plot(fit, full = FALSE)
[Package eBsc version 4.17 Index]