calculate_distance {dynutils} | R Documentation |
Calculate (column-wise) distances/similarity between two matrices
Description
These matrices can be dense or sparse.
Usage
calculate_distance(
x,
y = NULL,
method = c("pearson", "spearman", "cosine", "euclidean", "chisquared", "hamming",
"kullback", "manhattan", "maximum", "canberra", "minkowski"),
margin = 1,
diag = FALSE,
drop0 = FALSE
)
list_distance_methods()
calculate_similarity(
x,
y = NULL,
margin = 1,
method = c("spearman", "pearson", "cosine"),
diag = FALSE,
drop0 = FALSE
)
list_similarity_methods()
Arguments
x |
A numeric matrix, dense or sparse. |
y |
(Optional) a numeric matrix, dense or sparse, with |
method |
Which distance method to use. Options are: |
margin |
integer indicating margin of similarity/distance computation. 1 indicates rows or 2 indicates columns. |
diag |
if |
drop0 |
if |
Examples
## Generate two matrices with 50 and 100 samples
library(Matrix)
x <- Matrix::rsparsematrix(50, 1000, .01)
y <- Matrix::rsparsematrix(100, 1000, .01)
dist_euclidean <- calculate_distance(x, y, method = "euclidean")
dist_manhattan <- calculate_distance(x, y, method = "manhattan")
dist_spearman <- calculate_distance(x, y, method = "spearman")
dist_pearson <- calculate_distance(x, y, method = "pearson")
dist_angular <- calculate_distance(x, y, method = "cosine")
[Package dynutils version 1.0.11 Index]