parameter_set {dynparam} | R Documentation |
Parameter set helper functions
Description
Parameter set helper functions
Usage
parameter_set(..., parameters = NULL, forbidden = NULL)
is_parameter_set(x)
## S3 method for class 'parameter_set'
as.list(x, ...)
as_parameter_set(li)
get_defaults(x)
sip(x, n = 1, as_tibble = TRUE)
as_paramhelper(x)
Arguments
... |
Parameters to wrap in a parameter set. |
parameters |
A list of parameters to wrap in a parameter set. |
forbidden |
States forbidden region of parameter via a character vector, which will be turned into an expression. |
x |
An object for which to check whether it is a parameter set. |
li |
A list to be converted into a parameter set. |
n |
Number of objects to return. |
as_tibble |
Whether or not to return as a tibble. |
Parameter set instatiations
-
get_defaults()
: Get all default parameters. -
sip()
: It's likesample()
, but for parameter sets. -
as_paramhelper()
: Convert a parameter set to a ParamHelpers object.
Serialisation
-
as.list()
: Converting a parameter set to a list. -
as_parameter_set()
: Converting a list back to a parameter set. -
is_parameter_set(x)
: Checking whether something is a parameter set.
See Also
dynparam for an overview of all dynparam functionality.
Examples
parameters <- parameter_set(
integer_parameter(
id = "num_iter",
default = 100L,
distribution = expuniform_distribution(lower = 1L, upper = 10000L),
description = "Number of iterations"
),
subset_parameter(
id = "dimreds",
default = c("pca", "mds"),
values = c("pca", "mds", "tsne", "umap", "ica"),
description = "Which dimensionality reduction methods to apply (can be multiple)"
),
integer_range_parameter(
id = "ks",
default = c(3L, 15L),
lower_distribution = uniform_distribution(1L, 5L),
upper_distribution = uniform_distribution(10L, 20L),
description = "The numbers of clusters to be evaluated"
)
)
get_defaults(parameters)
sip(parameters, n = 1)