generate_cells {dyngen} | R Documentation |
Simulate the cells
Description
generate_cells()
runs simulations in order to determine the gold standard
of the simulations.
simulation_default()
is used to configure parameters pertaining this process.
Usage
generate_cells(model)
simulation_default(
burn_time = NULL,
total_time = NULL,
ssa_algorithm = ssa_etl(tau = 30/3600),
census_interval = 4,
experiment_params = bind_rows(simulation_type_wild_type(num_simulations = 32),
simulation_type_knockdown(num_simulations = 0)),
store_reaction_firings = FALSE,
store_reaction_propensities = FALSE,
compute_cellwise_grn = FALSE,
compute_dimred = TRUE,
compute_rna_velocity = FALSE,
kinetics_noise_function = kinetics_noise_simple(mean = 1, sd = 0.005)
)
simulation_type_wild_type(
num_simulations,
seed = sample.int(10 * num_simulations, num_simulations)
)
simulation_type_knockdown(
num_simulations,
timepoint = runif(num_simulations),
genes = "*",
num_genes = sample(1:5, num_simulations, replace = TRUE, prob = 0.25^(1:5)),
multiplier = runif(num_simulations, 0, 1),
seed = sample.int(10 * num_simulations, num_simulations)
)
Arguments
model |
A dyngen intermediary model for which the gold standard been generated with |
burn_time |
The burn in time of the system, used to determine an initial state vector. If |
total_time |
The total simulation time of the system. If |
ssa_algorithm |
Which SSA algorithm to use for simulating the cells with |
census_interval |
A granularity parameter for the outputted simulation. |
experiment_params |
A tibble generated by rbinding multiple calls of |
store_reaction_firings |
Whether or not to store the number of reaction firings. |
store_reaction_propensities |
Whether or not to store the propensity values of the reactions. |
compute_cellwise_grn |
Whether or not to compute the cellwise GRN activation values. |
compute_dimred |
Whether to perform a dimensionality reduction after simulation. |
compute_rna_velocity |
Whether or not to compute the propensity ratios after simulation. |
kinetics_noise_function |
A function that will generate noise to the kinetics of each simulation.
It takes the |
num_simulations |
The number of simulations to run. |
seed |
A set of seeds for each of the simulations. |
timepoint |
The relative time point of the knockdown |
genes |
Which genes to sample from. |
num_genes |
The number of genes to knockdown. |
multiplier |
The strength of the knockdown. Use 0 for a full knockout, 0<x<1 for a knockdown, and >1 for an overexpression. |
Value
A dyngen model.
See Also
dyngen on how to run a complete dyngen simulation
Examples
library(dplyr)
model <-
initialise_model(
backbone = backbone_bifurcating(),
simulation = simulation_default(
ssa_algorithm = ssa_etl(tau = .1),
experiment_params = bind_rows(
simulation_type_wild_type(num_simulations = 4),
simulation_type_knockdown(num_simulations = 4)
)
)
)
data("example_model")
model <- example_model %>% generate_cells()
plot_simulations(model)
plot_gold_mappings(model)
plot_simulation_expression(model)