| dyngen {dyngen} | R Documentation |
dyngen: A multi-modal simulator for spearheading single-cell omics analyses
Description
A toolkit for generating synthetic single cell data.
Step 1, initialise dyngen model
-
initialise_model(): Define and store settings for all following steps. See each of the sections below for more information. Use a predefined backbone:
Create a custom backbone:
Visualise the backbone:
Step 2, generate TF network
-
generate_tf_network(): Generate a transcription factor network from the backbone -
tf_network_default(): Parameters for configuring this step
Step 3, add more genes to the gene network
-
generate_feature_network(): Generate a target network -
feature_network_default(): Parameters for configuring this step -
plot_feature_network(): Visualise the gene network
Step 4, generate gene kinetics
-
generate_kinetics(): Generate the gene kinetics -
kinetics_default(),kinetics_random_distributions(): Parameters for configuring this step
Step 5, simulate the gold standard
-
generate_gold_standard(): Simulate the gold standard backbone, used for mapping to cell states afterwards -
gold_standard_default(): Parameters for configuring this step -
plot_gold_mappings(): Visualise the mapping of the simulations to the gold standard -
plot_gold_simulations(): Visualise the gold standard simulations using the dimred -
plot_gold_expression(): Visualise the expression of the gold standard over simulation time
Step 6, simulate the cells
-
generate_cells(): Simulate the cells based on its GRN -
simulation_default(): Parameters for configuring this step -
simulation_type_wild_type(),simulation_type_knockdown(): Used for configuring the type of simulation -
kinetics_noise_none(),kinetics_noise_simple(): Different kinetics randomisers to apply to each simulation -
plot_simulations(): Visualise the simulations using the dimred -
plot_simulation_expression(): Visualise the expression of the simulations over simulation time
Step 7, simulate cell and transcripting sampling
-
generate_experiment(): Sample cells and transcripts from experiment -
list_experiment_samplers(),experiment_snapshot(),experiment_synchronised(): Parameters for configuring this step -
simtime_from_backbone(): Determine the simulation time from the backbone -
plot_experiment_dimred(): Plot a dimensionality reduction of the final dataset
Step 8, convert to dataset
-
as_dyno(),wrap_dataset(): Convert a dyngen model to a dyno dataset -
as_anndata(): Convert a dyngen model to an anndata dataset -
as_sce(): Convert a dyngen model to a SingleCellExperiment dataset -
as_seurat(): Convert a dyngen model to a Seurat dataset
One-shot function
-
generate_dataset(): Run through steps 2 to 8 with a single function -
plot_summary(): Plot a summary of all dyngen simulation steps
Data objects
-
example_model: A (very) small toy dyngen model, used for documentation and testing purposes
-
realcounts: A set of real single-cell expression datasets, to be used as reference datasets
-
realnets: A set of real gene regulatory networks, to be sampled in step 3
Varia functions
-
dyngen: This help page
-
get_timings(): Extract execution timings for each of the dyngen steps -
combine_models(): Combine multiple dyngen models -
rnorm_bounded(): A bounded version ofrnorm() -
runif_subrange(): A subrange version ofrunif()
Examples
model <- initialise_model(
backbone = backbone_bifurcating()
)
model <- model %>%
generate_tf_network() %>%
generate_feature_network() %>%
generate_kinetics() %>%
generate_gold_standard() %>%
generate_cells() %>%
generate_experiment()
dataset <- wrap_dataset(model, format = "dyno")
# format can also be set to "sce", "seurat", "anndata" or "list"
# library(dynplot)
# plot_dimred(dataset)