dimred {dyndimred} | R Documentation |
Perform simple dimensionality reduction
Description
Perform simple dimensionality reduction
Usage
dimred(x, method, ndim, ...)
dimred_dm_destiny(
x,
ndim = 2,
distance_method = c("euclidean", "spearman", "cosine")
)
dimred_dm_diffusionmap(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_ica(x, ndim = 3)
dimred_knn_fr(
x,
ndim = 2,
lmds_components = 10,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski"),
n_neighbors = 10
)
dimred_landmark_mds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_lle(x, ndim = 3)
dimred_mds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_isomds(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_sammon(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_mds_smacof(
x,
ndim = 2,
distance_method = c("pearson", "spearman", "cosine", "euclidean", "chisquared",
"hamming", "kullback", "manhattan", "maximum", "canberra", "minkowski")
)
dimred_pca(x, ndim = 2)
list_dimred_methods()
Arguments
x |
Log transformed expression data, with rows as cells and columns as features |
method |
The name of the dimensionality reduction method to use |
ndim |
The number of dimensions |
... |
Any arguments to be passed to the dimensionality reduction method |
distance_method |
The name of the distance metric, see dynutils::calculate_distance |
lmds_components |
The number of lmds components to use. If NULL, LMDS will not be performed first. If this is a matrix, it is assumed it is a dimred for x. |
n_neighbors |
The size of local neighborhood (in terms of number of neighboring sample points). |
Examples
library(Matrix)
x <- abs(Matrix::rsparsematrix(100, 100, .5))
dimred(x, "pca", ndim = 3)
dimred(x, "ica", ndim = 3)
if (interactive()) {
dimred_dm_destiny(x)
dimred_dm_diffusionmap(x)
dimred_ica(x)
dimred_landmark_mds(x)
dimred_lle(x)
dimred_mds(x)
dimred_mds_isomds(x)
dimred_mds_sammon(x)
dimred_mds_smacof(x)
dimred_pca(x)
dimred_tsne(x)
dimred_umap(x)
}
[Package dyndimred version 1.0.4 Index]