mvm {dtw} | R Documentation |
Minimum Variance Matching algorithm
Description
Step patterns to compute the Minimum Variance Matching (MVM) correspondence between time series
Usage
mvmStepPattern(elasticity = 20)
Arguments
elasticity |
integer: maximum consecutive reference elements skippable |
Details
The Minimum Variance Matching algorithm (1) finds the non-contiguous parts of reference which best match the query, allowing for arbitrarily long "stretches" of reference to be excluded from the match. All elements of the query have to be matched. First and last elements of the query are anchored at the boundaries of the reference.
The mvmStepPattern
function creates a stepPattern
object which
implements this behavior, to be used with the usual dtw()
call
(see example). MVM is computed as a special case of DTW, with a very large,
asymmetric-like step pattern.
The elasticity
argument limits the maximum run length of reference
which can be skipped at once. If no limit is desired, set elasticity
to an integer at least as large as the reference (computation time grows
linearly).
Value
A step pattern object.
Author(s)
Toni Giorgino
References
Latecki, L. J.; Megalooikonomou, V.; Wang, Q. & Yu, D. An elastic partial shape matching technique Pattern Recognition, 2007, 40, 3069-3080. doi:10.1016/j.patcog.2007.03.004
See Also
Other objects in stepPattern()
.
Examples
## The hand-checkable example given in Fig. 5, ref. [1] above
diffmx <- matrix( byrow=TRUE, nrow=5, c(
0, 1, 8, 2, 2, 4, 8,
1, 0, 7, 1, 1, 3, 7,
-7, -6, 1, -5, -5, -3, 1,
-5, -4, 3, -3, -3, -1, 3,
-7, -6, 1, -5, -5, -3, 1 ) ) ;
## Cost matrix
costmx <- diffmx^2;
## Compute the alignment
al <- dtw(costmx,step.pattern=mvmStepPattern(10))
## Elements 4,5 are skipped
print(al$index2)
plot(al,main="Minimum Variance Matching alignment")