dsrTest-package {dsrTest}R Documentation

Tests and Confidence Intervals on Directly Standardized Rates for Several Methods

Description

Perform a test of a simple null hypothesis about a directly standardized rate and obtain the matching confidence interval using a choice of methods.

Details

The DESCRIPTION file:

Package: dsrTest
Type: Package
Title: Tests and Confidence Intervals on Directly Standardized Rates for Several Methods
Version: 1.0.0
Date: 2022-06-12
Author: Michael Nelson
Maintainer: Michael Nelson <michael.nelson.r.pkg@gmail.com>
Description: Perform a test of a simple null hypothesis about a directly standardized rate and obtain the matching confidence interval using a choice of methods.
Encoding: UTF-8
License: GPL (>= 2)
RoxygenNote: 7.2.0
Roxygen: list(markdown = TRUE)
Depends: R (>= 2.10)
Imports: stats, exactci, asht (>= 0.9.1), loglognorm,
Suggests: testthat, knitr, rmarkdown, covr
URL: https://github.com/mnelsonr/dsrTest
BugReports: https://github.com/mnelsonr/dsrTest/issues
VignetteBuilder: knitr
LazyData: true

Index of help topics:

asymptoticControl       Control Function for Asymptotic Method
                        Confidence Intervals
betaControl             Control Function for Beta Method for Confidence
                        Intervals
dobsonControl           Control Function for Dobson Method Confidence
                        Intervals
downs.mi                Downs' syndrome cases and of total live births
                        by maternal age and birth order, Michigan,
                        1950-1964.
dsrTest                 Tests and Confidence Intervals on Directly
                        Standardized Rates
dsrTest-package         Tests and Confidence Intervals on Directly
                        Standardized Rates for Several Methods
gammaControl            Control Function for Gamma Method Confidence
                        Intervals

The function dsrTest() implements a number of different parameterizations and methods for computing confidence intervals on directly standardized rates. These methods are described in detail in Fay and Feuer (1997), Tiwari et al (2006), Ng et al (2008) and Fay and Kim (2017).

The various <method>Control() functions allow modifications to the general approaches.

Author(s)

Michael Nelson

Maintainer: Michael Nelson <michael.nelson.r.pkg@gmail.com>

References

Dobson, AJ, Kuulasmaa, K, Eberle, E and Scherer, J (1991) 'Confidence intervals for weighted sums of Poisson parameters', Statistics in Medicine, 10: 457–462. doi:10.1002/sim.4780100317

Swift, MB (1995) 'Simple confidence intervals for standardized rates based on the approximate bootstrap method', Statistics in Medicine, 14, 1875–1888. doi:10.1002/sim.4780141704.

Fay MP & Feuer EJ (1997) 'Confidence intervals for directly standardized rates: a method based on the gamma distribution.' Statistics in Medicine. 16: 791–801. doi:10.1002/(sici)1097-0258(19970415)16:7<791::aid-sim500>3.0.co;2-#

Tiwari RC, Clegg LX, & Zou Z (2006) 'Efficient interval estimation for age-adjusted cancer rates.' Statistical Methods in Medical Research 15: 547–569. doi:10.1177/0962280206070621

Ng HKT, Filardo, G & Zheng G (2008) 'Confidence interval estimating procedures for standardized incidence rates.' Computational Statistics and Data Analysis 52: 3501–3516. doi:10.1016/j.csda.2007.11.004

Fay, MP & Kim S (2017) 'Confidence intervals for directly standardized rates using mid-p gamma intervals.' Biometrical Journal 59(2): 377–387. doi:10.1002/bimj.201600111

See Also

wspoissonTest

Examples

## using the example from asht::wspoissonTest
## birth data on Down's syndrome from Michigan, 1950-1964
## see Table II  of Fay and Feuer (1997)
## xfive = counts for mothers who have had 5 or more children
## nfive and ntotal are number of live births 
xfive<-c(0, 8, 63, 112, 262, 295)
nfive<-c(327, 30666, 123419, 149919, 104088, 34392)
ntotal<-c(319933, 931318, 786511, 488235, 237863, 61313)
## use mult =10^5 to give rates per 100,000
## gamma method of Fay and Feuer (1997) is default
dsrTest(xfive, nfive, ntotal, method = "gamma", mult = 1e5)
## Dobson et al (1991)
dsrTest(xfive, nfive, ntotal, method = "dobson", mult = 1e5)
## Asymptotic with log transformation
dsrTest(xfive, nfive, ntotal, method = "asymptotic", mult = 1e5,
control = list(trans = "log"))

[Package dsrTest version 1.0.0 Index]