dsrTest-package {dsrTest} | R Documentation |
Tests and Confidence Intervals on Directly Standardized Rates for Several Methods
Description
Perform a test of a simple null hypothesis about a directly standardized rate and obtain the matching confidence interval using a choice of methods.
Details
The DESCRIPTION file:
Package: | dsrTest |
Type: | Package |
Title: | Tests and Confidence Intervals on Directly Standardized Rates for Several Methods |
Version: | 1.0.0 |
Date: | 2022-06-12 |
Author: | Michael Nelson |
Maintainer: | Michael Nelson <michael.nelson.r.pkg@gmail.com> |
Description: | Perform a test of a simple null hypothesis about a directly standardized rate and obtain the matching confidence interval using a choice of methods. |
Encoding: | UTF-8 |
License: | GPL (>= 2) |
RoxygenNote: | 7.2.0 |
Roxygen: | list(markdown = TRUE) |
Depends: | R (>= 2.10) |
Imports: | stats, exactci, asht (>= 0.9.1), loglognorm, |
Suggests: | testthat, knitr, rmarkdown, covr |
URL: | https://github.com/mnelsonr/dsrTest |
BugReports: | https://github.com/mnelsonr/dsrTest/issues |
VignetteBuilder: | knitr |
LazyData: | true |
Index of help topics:
asymptoticControl Control Function for Asymptotic Method Confidence Intervals betaControl Control Function for Beta Method for Confidence Intervals dobsonControl Control Function for Dobson Method Confidence Intervals downs.mi Downs' syndrome cases and of total live births by maternal age and birth order, Michigan, 1950-1964. dsrTest Tests and Confidence Intervals on Directly Standardized Rates dsrTest-package Tests and Confidence Intervals on Directly Standardized Rates for Several Methods gammaControl Control Function for Gamma Method Confidence Intervals
The function dsrTest()
implements a number of different
parameterizations and methods for computing confidence intervals on
directly standardized rates. These methods are described in detail in
Fay and Feuer (1997), Tiwari et al (2006), Ng et al (2008) and Fay
and Kim (2017).
The various <method>Control()
functions allow modifications to
the general approaches.
Author(s)
Michael Nelson
Maintainer: Michael Nelson <michael.nelson.r.pkg@gmail.com>
References
Dobson, AJ, Kuulasmaa, K, Eberle, E and Scherer, J (1991) 'Confidence intervals for weighted sums of Poisson parameters', Statistics in Medicine, 10: 457–462. doi:10.1002/sim.4780100317
Swift, MB (1995) 'Simple confidence intervals for standardized rates based on the approximate bootstrap method', Statistics in Medicine, 14, 1875–1888. doi:10.1002/sim.4780141704.
Fay MP & Feuer EJ (1997) 'Confidence intervals for directly standardized rates: a method based on the gamma distribution.' Statistics in Medicine. 16: 791–801. doi:10.1002/(sici)1097-0258(19970415)16:7<791::aid-sim500>3.0.co;2-#
Tiwari RC, Clegg LX, & Zou Z (2006) 'Efficient interval estimation for age-adjusted cancer rates.' Statistical Methods in Medical Research 15: 547–569. doi:10.1177/0962280206070621
Ng HKT, Filardo, G & Zheng G (2008) 'Confidence interval estimating procedures for standardized incidence rates.' Computational Statistics and Data Analysis 52: 3501–3516. doi:10.1016/j.csda.2007.11.004
Fay, MP & Kim S (2017) 'Confidence intervals for directly standardized rates using mid-p gamma intervals.' Biometrical Journal 59(2): 377–387. doi:10.1002/bimj.201600111
See Also
Examples
## using the example from asht::wspoissonTest
## birth data on Down's syndrome from Michigan, 1950-1964
## see Table II of Fay and Feuer (1997)
## xfive = counts for mothers who have had 5 or more children
## nfive and ntotal are number of live births
xfive<-c(0, 8, 63, 112, 262, 295)
nfive<-c(327, 30666, 123419, 149919, 104088, 34392)
ntotal<-c(319933, 931318, 786511, 488235, 237863, 61313)
## use mult =10^5 to give rates per 100,000
## gamma method of Fay and Feuer (1997) is default
dsrTest(xfive, nfive, ntotal, method = "gamma", mult = 1e5)
## Dobson et al (1991)
dsrTest(xfive, nfive, ntotal, method = "dobson", mult = 1e5)
## Asymptotic with log transformation
dsrTest(xfive, nfive, ntotal, method = "asymptotic", mult = 1e5,
control = list(trans = "log"))