reparametrize {dsfa} | R Documentation |
Transforms the given inputs to the parameters and the first three moments of the corresponding distribution. For the normal-halfnormal distribution the parametrization of the classical stochastic frontier as well as the skew-normal and centred skew-normal specification ar provided. For the normal-exponential an the specification via \lambda
is available.
reparametrize(
mu = NULL,
sigma_v = NULL,
sigma_u = NULL,
s = NULL,
lambda = NULL,
par_u = NULL,
mean = NULL,
sd = NULL,
skew = NULL,
family = NULL
)
mu |
vector of |
sigma_v |
vector of |
sigma_u |
vector of |
s |
|
lambda |
vector of |
par_u |
vector of |
mean |
vector of mean of |
sd |
vector of standard deviation of |
skew |
vector of skewness of |
family |
|
The following input combinations are allowed for the normal-halfnormal distribution
mu
, sigma_v
, sigma_u
, s
mean
, sd
, skew
, family="normhnorm"
with optional s
\qquad,
while for the normal-exponential distribution the feasible inputs are
mu
, sigma_v
, lambda
, s
mean
, sd
, skew
, family="normexp"
with optional s
\qquad.
Other input combinations are not feasible.
Returns a data.frame with the parameter values for all specification.
Kumbhakar SC, Wang H, Horncastle AP (2015). A practitioner's guide to stochastic frontier analysis using Stata. Cambridge University Press.
Azzalini A (2013). The skew-normal and related families, volume 3. Cambridge University Press.
#Normal-halfnormal distribution
para<-reparametrize(mu=1, sigma_v=2, sigma_u=3,s=-1)
reparametrize(mean=para$mean, sd=para$sd, skew=para$skew, family="normhnorm")
#Normal-exponential distribution
para<-reparametrize(mu=1, sigma_v=2, lambda=1/3,s=-1)
reparametrize(mean=para$mean, sd=para$sd, skew=para$skew, family="normexp")