make_dsem_ram {dsem} | R Documentation |
Make a RAM (Reticular Action Model)
Description
make_dsem_ram
converts SEM arrow notation to ram
describing SEM parameters
Usage
make_dsem_ram(
sem,
times,
variables,
covs = NULL,
quiet = FALSE,
remove_na = TRUE
)
Arguments
sem |
Specification for time-series structural equation model structure
including lagged or simultaneous effects. See Details section in
|
times |
A character vector listing the set of times in order |
variables |
A character vector listing the set of variables |
covs |
A character vector listing variables for which to estimate a standard deviation |
quiet |
Boolean indicating whether to print messages to terminal |
remove_na |
Boolean indicating whether to remove NA values from RAM (default) or not.
|
Details
RAM specification using arrow-and-lag notation
Each line of the RAM specification for make_dsem_ram
consists of four (unquoted) entries,
separated by commas:
- 1. Arrow specification:
This is a simple formula, of the form
A -> B
or, equivalently,B <- A
for a regression coefficient (i.e., a single-headed or directional arrow);A <-> A
for a variance orA <-> B
for a covariance (i.e., a double-headed or bidirectional arrow). Here,A
andB
are variable names in the model. If a name does not correspond to an observed variable, then it is assumed to be a latent variable. Spaces can appear freely in an arrow specification, and there can be any number of hyphens in the arrows, including zero: Thus, e.g.,A->B
,A --> B
, andA>B
are all legitimate and equivalent.- 2. Lag (using positive values):
An integer specifying whether the linkage is simultaneous (
lag=0
) or lagged (e.g.,X -> Y, 1, XtoY
indicates that X in time T affects Y in time T+1), where only one-headed arrows can be lagged. Using positive values to indicate lags then matches the notational convention used in package dynlm.- 3. Parameter name:
The name of the regression coefficient, variance, or covariance specified by the arrow. Assigning the same name to two or more arrows results in an equality constraint. Specifying the parameter name as
NA
produces a fixed parameter.- 4. Value:
start value for a free parameter or value of a fixed parameter. If given as
NA
(or simply omitted), the model is provide a default starting value.
Lines may end in a comment following #. The function extends code copied from package 'sem' under licence GPL (>= 2) with permission from John Fox.
Simultaneous autoregressive process for simultaneous and lagged effects
This text then specifies linkages in a multivariate time-series model for variables \mathbf X
with dimensions T \times C
for T
times and C
variables.
make_dsem_ram
then parses this text to build a path matrix \mathbf{P}
with
dimensions TC \times TC
, where element \rho_{k_2,k_1}
represents the impact of x_{t_1,c_1}
on x_{t_2,c_2}
, where k_1=T c_1+t_1
and k_2=T c_2+t_2
. This path matrix defines a simultaneous equation
\mathrm{vec}(\mathbf X) = \mathbf P \mathrm{vec}(\mathbf X) + \mathrm{vec}(\mathbf \Delta)
where \mathbf \Delta
is a matrix of exogenous errors with covariance \mathbf{V = \Gamma \Gamma}^t
,
where \mathbf \Gamma
is the Cholesky of exogenous covariance. This
simultaneous autoregressive (SAR) process then results in \mathbf X
having covariance:
\mathrm{Cov}(\mathbf X) = \mathbf{(I - P)}^{-1} \mathbf{\Gamma \Gamma}^t \mathbf{((I - P)}^{-1})^t
Usefully, computing the inverse-covariance (precision) matrix \mathbf{Q = V}^{-1}
does not require inverting \mathbf{(I - P)}
:
\mathbf{Q} = (\mathbf{\Gamma}^{-1} \mathbf{(I - P)})^t \mathbf{\Gamma}^{-1} \mathbf{(I - P)}
Example: univariate first-order autoregressive model
This simultaneous autoregressive (SAR) process across variables and times
allows the user to specify both simutanous effects (effects among variables within
year T
) and lagged effects (effects among variables among years T
).
As one example, consider a univariate and first-order autoregressive process where T=4
.
with independent errors. This is specified by passing sem = "X -> X, 1, rho \n X <-> X, 0, sigma"
to make_dsem_ram
.
This is then parsed to a RAM:
heads | to | from | paarameter | start |
1 | 2 | 1 | 1 | <NA> |
1 | 3 | 2 | 1 | <NA> |
1 | 4 | 3 | 1 | <NA> |
2 | 1 | 1 | 2 | <NA> |
2 | 2 | 2 | 2 | <NA> |
2 | 3 | 3 | 2 | <NA> |
2 | 4 | 4 | 2 | <NA> |
Rows of this RAM where heads=1
are then interpreted to construct the path matrix \mathbf P
, where column "from"
in the RAM indicates column number in the matrix, column "to" in the RAM indicates row number in the matrix:
\mathbf P = \begin{bmatrix}
0 & 0 & 0 & 0 \\
\rho & 0 & 0 & 0 \\
0 & \rho & 0 & 0 \\
0 & 0 & \rho & 0\\
\end{bmatrix}
While rows where heads=2
are interpreted to construct the Cholesky of exogenous covariance \mathbf \Gamma
and column "parameter" in the RAM associates each nonzero element of those
two matrices with an element of a vector of estimated parameters:
\mathbf \Gamma = \begin{bmatrix}
\sigma & 0 & 0 & 0 \\
0 & \sigma & 0 & 0 \\
0 & 0 & \sigma & 0 \\
0 & 0 & 0 & \sigma\\
\end{bmatrix}
with two estimated parameters \mathbf \beta = (\rho, \sigma)
. This then results in covariance:
\mathrm{Cov}(\mathbf X) = \sigma^2 \begin{bmatrix}
1 & \rho^1 & \rho^2 & \rho^3 \\
\rho^1 & 1 + \rho^2 & \rho^1 (1 + \rho^2) & \rho^2 (1 + \rho^2) \\
\rho^2 & \rho^1 (1 + \rho^2) & 1 + \rho^2 + \rho^4 & \rho^1 (1 + \rho^2 + \rho^4) \\
\rho^3 & \rho^2 (1 + \rho^2) & \rho^1 (1 + \rho^2 + \rho^4) & 1 + \rho^2 + \rho^4 + \rho^6 \\
\end{bmatrix}
Which converges on the stationary covariance for an AR1 process for times t>>1
:
\mathrm{Cov}(\mathbf X) = \frac{\sigma^2}{1+\rho^2} \begin{bmatrix}
1 & \rho^1 & \rho^2 & \rho^3 \\
\rho^1 & 1 & \rho^1 & \rho^2 \\
\rho^2 & \rho^1 & 1 & \rho^1 \\
\rho^3 & \rho^2 & \rho^1 & 1\\
\end{bmatrix}
except having a lower pointwise variance for the initial times, which arises as a "boundary effect".
Similarly, the arrow-and-lag notation can be used to specify a SAR representing a conventional structural equation model (SEM), cross-lagged (a.k.a. vector autoregressive) models (VAR), dynamic factor analysis (DFA), or many other time-series models.
Value
A reticular action module (RAM) describing dependencies
Examples
# Univariate AR1
sem = "
X -> X, 1, rho
X <-> X, 0, sigma
"
make_dsem_ram( sem=sem, variables="X", times=1:4 )
# Univariate AR2
sem = "
X -> X, 1, rho1
X -> X, 2, rho2
X <-> X, 0, sigma
"
make_dsem_ram( sem=sem, variables="X", times=1:4 )
# Bivariate VAR
sem = "
X -> X, 1, XtoX
X -> Y, 1, XtoY
Y -> X, 1, YtoX
Y -> Y, 1, YtoY
X <-> X, 0, sdX
Y <-> Y, 0, sdY
"
make_dsem_ram( sem=sem, variables=c("X","Y"), times=1:4 )
# Dynamic factor analysis with one factor and two manifest variables
# (specifies a random-walk for the factor, and miniscule residual SD)
sem = "
factor -> X, 0, loadings1
factor -> Y, 0, loadings2
factor -> factor, 1, NA, 1
X <-> X, 0, NA, 0.01 # Fix at negligible value
Y <-> Y, 0, NA, 0.01 # Fix at negligible value
"
make_dsem_ram( sem=sem, variables=c("X","Y","factor"), times=1:4 )
# ARIMA(1,1,0)
sem = "
factor -> factor, 1, rho1 # AR1 component
X -> X, 1, NA, 1 # Integrated component
factor -> X, 0, NA, 1
X <-> X, 0, NA, 0.01 # Fix at negligible value
"
make_dsem_ram( sem=sem, variables=c("X","factor"), times=1:4 )
# ARIMA(0,0,1)
sem = "
factor -> X, 0, NA, 1
factor -> X, 1, rho1 # MA1 component
X <-> X, 0, NA, 0.01 # Fix at negligible value
"
make_dsem_ram( sem=sem, variables=c("X","factor"), times=1:4 )