calculate_residuals_drift {drifter} | R Documentation |
Calculate Residual Drift for old model and new vs. old data
Description
Calculate Residual Drift for old model and new vs. old data
Usage
calculate_residuals_drift(model_old, data_old, data_new, y_old, y_new,
predict_function = predict, bins = 20)
Arguments
model_old |
model created on historical / 'old' data |
data_old |
data frame with historical / 'old' data |
data_new |
data frame with current / 'new' data |
y_old |
true values of target variable for historical / 'old' data |
y_new |
true values of target variable for current / 'new' data |
predict_function |
function that takes two arguments: model and new data and returns numeric vector with predictions, by default it's 'predict' |
bins |
continuous variables are discretized to 'bins' intervals of equal sizes |
Value
an object of a class 'covariate_drift' (data.frame) with Non-Intersection Distances calculated for residuals
Examples
library("DALEX")
model_old <- lm(m2.price ~ ., data = apartments)
model_new <- lm(m2.price ~ ., data = apartments_test[1:1000,])
calculate_model_drift(model_old, model_new,
apartments_test[1:1000,],
apartments_test[1:1000,]$m2.price)
library("ranger")
predict_function <- function(m,x,...) predict(m, x, ...)$predictions
model_old <- ranger(m2.price ~ ., data = apartments)
calculate_residuals_drift(model_old,
apartments_test[1:4000,], apartments_test[4001:8000,],
apartments_test$m2.price[1:4000], apartments_test$m2.price[4001:8000],
predict_function = predict_function)
calculate_residuals_drift(model_old,
apartments, apartments_test,
apartments$m2.price, apartments_test$m2.price,
predict_function = predict_function)
[Package drifter version 0.2.1 Index]