big.drglm {drglm}R Documentation

Fitting Linear and Generalized Linear Models to out of the memory data sets in "Divide and Recombine" approach

Description

Function big.drglm aimed to fit GLMs to datasets larger in size that can not be stored in memory. It uses popular divide and recombine technique to handle large data sets efficiently.

Usage

big.drglm(data.generator, formula, chunks, family)

Arguments

data.generator

Using the function make.data to initialize the data reading function with the data set path and chunk size, then the data.generate is used directly as data source for the big.drglm function.

formula

An entity belonging to the "formula" class (or one that can be transformed into that class) represents a symbolic representation of the model that needs to be adjusted. Specifics about how the model is defined can be found in the 'Details' section.

chunks

Number of subsets to be divided.

family

An explanation of the error distribution that will be implemented in the model.

Value

A Generalized Linear Model is fitted in "Divide & Recombine" approach using preferred number of chunks to data set. A list of model coefficients is estimated using divide and recombine method with the respective standard error of estimates.

Author(s)

MH Nayem

References

See Also

drglm, drglm.multinom

Examples

# Create a toy dataset
set.seed(123)
# Number of rows to be generated
n <- 10000

# Creating dataset
dataset <- data.frame(
  Var_1 = round(rnorm(n, mean = 50, sd = 10)),
  Var_2 = round(rnorm(n, mean = 7.5, sd = 2.1)),
  Var_3 = as.factor(sample(c("0", "1"), n, replace = TRUE)),
  Var_4 = as.factor(sample(c("0", "1", "2"), n, replace = TRUE)),
  Var_5 = as.factor(sample(0:15, n, replace = TRUE)),
  Var_6 = round(rnorm(n, mean = 60, sd = 5))
)

# Save the dataset to a temporary file
temp_file <- tempfile(fileext = ".csv")
write.csv(dataset, file = temp_file, row.names = FALSE)

# Path to the temporary file
dataset_path <- temp_file
dataset_path  # Display the path to the temporary file

# Initialize the data reading function with the data set path and chunk size
da <- drglm::make.data(dataset_path, chunksize = 1000)
# Fitting MLR Models
nmodel <- drglm::big.drglm(da,
formula = Var_1 ~ Var_2+ factor(Var_3)+factor(Var_4)+ factor(Var_5)+ Var_6,
10, family="gaussian")
# View the results table
print(nmodel)
# Fitting logistic Regression Model
bmodel <- drglm::big.drglm(da,
formula = factor(Var_3) ~ Var_1+ Var_2+ factor(Var_4)+ factor(Var_5)+ Var_6,
10, family="binomial")
# View the results table
print(bmodel)
# Fitting Poisson Regression Model
pmodel <- drglm::big.drglm(da,
formula = Var_5 ~ Var_1+ Var_2+ factor(Var_3)+ factor(Var_4)+ Var_6,
10, family="poisson")
# View the results table
print(pmodel)

[Package drglm version 1.1 Index]