confint.dr4pl {dr4pl} | R Documentation |
Fit a 4 parameter logistic (4PL) model to dose-response data.
Description
Compute the approximate confidence intervals of the parameters of a 4PL model based on the asymptotic normality of least squares estimators.
Usage
## S3 method for class 'dr4pl'
confint(object, parm = NULL, level = 0.95, ...)
Arguments
object |
An object of the dr4pl class |
parm |
parameters of the dr4pl object. Usually made with [dr4pl_theta] |
level |
Confidence level |
... |
Other parameters to be passed to vcov |
Details
This function computes the approximate confidence intervals of the true parameters of a 4PL model based on the asymptotic normality of the least squares estimators in nonlinear regression. The Hessian matrix is used to obtain the second order approximation to the sum-of-squares loss function. Please refer to Subsection 5.2.2 of Seber and Wild (1989).
Value
A matrix of the confidence intervals in which each row represents a parameter and each column represents the lower and upper bounds of the confidence intervals of the corresponding parameters.
References
Seber GAF, Wild CJ (1989). Nonlinear regression, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley \& Sons, Inc., New York. ISBN 0-471-61760-1, doi: 10.1002/0471725315, http://dx.doi.org.libproxy.lib.unc.edu/10.1002/0471725315.
Examples
obj.dr4pl <- dr4pl(Response ~ Dose, data = sample_data_1) # Fit a 4PL model to data
## Use the data 'sample_data_1' to obtain confidence intervals.
confint(obj.dr4pl) # 95% confidence intervals
confint(obj.dr4pl, level = 0.99) # 99% confidence intervals
theta <- FindInitialParms(x = sample_data_1$Dose, y = sample_data_1$Response)
# Use the same data 'sample_data_1' but different parameter estimates to obtain
# confidence intervals.
confint(obj.dr4pl, parm = theta)