Nakagami distribution {dprop} | R Documentation |
Compute the distributional properties of the Nakagami distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Nakagami distribution.
Usage
d_naka(alpha, beta)
Arguments
alpha |
The strictly positive parameter of the Nakagami distribution ( |
beta |
The strictly positive parameter of the Nakagami distribution ( |
Details
The following is the probability density function of the Nakagami distribution:
f(x)=\frac{2\alpha^{\alpha}}{\Gamma(\alpha)\beta^{\alpha}}x^{2\alpha-1}e^{-\frac{\alpha x^{2}}{\beta}},
where x > 0
, \alpha > 0
and \beta > 0
.
Value
d_naka gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Nakagami distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Schwartz, J., Godwin, R. T., & Giles, D. E. (2013). Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution. Journal of Statistical Computation and Simulation, 83(3), 434-445.
See Also
Examples
d_naka(2,2)