Lomax distribution {dprop} | R Documentation |
Compute the distributional properties of the Lomax distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Lomax distribution.
Usage
d_lom(alpha, beta)
Arguments
alpha |
The strictly positive parameter of the Lomax distribution ( |
beta |
The strictly positive parameter of the Lomax distribution ( |
Details
The following is the probability density function of the Lomax distribution:
f(x)=\frac{\alpha}{\beta}\left(1+\frac{x}{\beta}\right)^{-\alpha-1},
where x > 0
, \alpha > 0
and \beta > 0
.
Value
d_lom gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Lomax distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Abd-Elfattah, A. M., Alaboud, F. M., & Alharby, A. H. (2007). On sample size estimation for Lomax distribution. Australian Journal of Basic and Applied Sciences, 1(4), 373-378.
See Also
Examples
d_lom(10,10)