Logistic distribution {dprop}R Documentation

Compute the distributional properties of the logistic distribution

Description

Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the logistic distribution.

Usage

d_logis(mu, sigma)

Arguments

mu

Location parameter of the logistic distribution (μ(,+)\mu\in\left(-\infty,+\infty\right)).

sigma

The strictly positive scale parameter of the logistic distribution (σ>0\sigma > 0).

Details

The following is the probability density function of the logistic distribution:

f(x)=e(xμ)σσ(1+e(xμ)σ)2, f(x)=\frac{e^{-\frac{\left(x-\mu\right)}{\sigma}}}{\sigma\left(1+e^{-\frac{\left(x-\mu\right)}{\sigma}}\right)^{2}},

where x(,+)x\in\left(-\infty,+\infty\right), μ(,+)\mu\in\left(-\infty,+\infty\right) and σ>0\sigma > 0.

Value

d_logis gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the logistic distribution.

Author(s)

Muhammad Imran.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.

References

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, Volume 2 (Vol. 289). John Wiley & Sons.

See Also

d_lnormal

Examples

d_logis(4,0.2)

[Package dprop version 0.1.0 Index]