Laplace distribution {dprop} | R Documentation |
Compute the distributional properties of the Laplace or double exponential distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Laplace distribution.
Usage
d_lap(alpha, beta)
Arguments
alpha |
Location parameter of the Laplace distribution ( |
beta |
The strictly positive scale parameter of the Laplace distribution ( |
Details
The following is the probability density function of the Laplace distribution:
f(x)=\frac{1}{2\beta}e^{\frac{-|x-\alpha|}{\beta}},
where x\in\left(-\infty,+\infty\right)
, \alpha\in\left(-\infty,+\infty\right)
and \beta > 0
.
Value
d_lap gives the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation at some parametric values based on the Laplace distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973-982.
See Also
Examples
d_lap(2,4)