Laplace distribution {dprop}R Documentation

Compute the distributional properties of the Laplace or double exponential distribution

Description

Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Laplace distribution.

Usage

d_lap(alpha, beta)

Arguments

alpha

Location parameter of the Laplace distribution (\alpha\in\left(-\infty,+\infty\right)).

beta

The strictly positive scale parameter of the Laplace distribution (\beta > 0).

Details

The following is the probability density function of the Laplace distribution:

f(x)=\frac{1}{2\beta}e^{\frac{-|x-\alpha|}{\beta}},

where x\in\left(-\infty,+\infty\right), \alpha\in\left(-\infty,+\infty\right) and \beta > 0.

Value

d_lap gives the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation at some parametric values based on the Laplace distribution.

Author(s)

Muhammad Imran.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.

References

Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973-982.

See Also

d_normal

Examples

d_lap(2,4)

[Package dprop version 0.1.0 Index]