Gumbel distribution {dprop} | R Documentation |
Compute the distributional properties of the Gumbel distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gumbel distribution.
Usage
d_gumbel(alpha, beta)
Arguments
alpha |
Location parameter of the Gumbel distribution ( |
beta |
The strictly positive scale parameter of the Gumbel distribution ( |
Details
The following is the probability density function of the Gumbel distribution:
f(x)=\frac{1}{\beta}e^{-(z+e^{-z})},
where z=\frac{x-\alpha}{\beta}
, x\in\left(-\infty,+\infty\right)
, \alpha\in\left(-\infty,+\infty\right)
and \beta > 0
.
Value
d_gumbel gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gumbel distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Gomez, Y. M., Bolfarine, H., & Gomez, H. W. (2019). Gumbel distribution with heavy tails and applications to environmental data. Mathematics and Computers in Simulation, 157, 115-129.
See Also
Examples
d_gumbel(1,2)