Gompertz distribution {dprop}R Documentation

Compute the distributional properties of the Gompertz distribution

Description

Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gompertz distribution.

Usage

d_gompertz(alpha, beta)

Arguments

alpha

The strictly positive parameter of the Gompertz distribution (\alpha > 0).

beta

The strictly positive parameter of the Gompertz distribution (\beta > 0).

Details

The following is the probability density function of the Gompertz distribution:

f(x)=\alpha e^{\beta x-\frac{\alpha}{\beta}\left(e^{\beta x}-1\right)},

where x > 0, \alpha > 0 and \beta > 0.

Value

d_gompertz gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gompertz distribution.

Author(s)

Muhammad Imran.

R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.

References

Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Abd-Elmougod, G. A. (2012). Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Computational Statistics & Data Analysis, 56(8), 2471-2485.

See Also

d_fre

Examples

d_gompertz(2,2)


[Package dprop version 0.1.0 Index]