Gompertz distribution {dprop} | R Documentation |
Compute the distributional properties of the Gompertz distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gompertz distribution.
Usage
d_gompertz(alpha, beta)
Arguments
alpha |
The strictly positive parameter of the Gompertz distribution ( |
beta |
The strictly positive parameter of the Gompertz distribution ( |
Details
The following is the probability density function of the Gompertz distribution:
f(x)=\alpha e^{\beta x-\frac{\alpha}{\beta}\left(e^{\beta x}-1\right)},
where x > 0
, \alpha > 0
and \beta > 0
.
Value
d_gompertz gives the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Gompertz distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Soliman, A. A., Abd-Ellah, A. H., Abou-Elheggag, N. A., & Abd-Elmougod, G. A. (2012). Estimation of the parameters of life for Gompertz distribution using progressive first-failure censored data. Computational Statistics & Data Analysis, 56(8), 2471-2485.
See Also
Examples
d_gompertz(2,2)