Burr XII distribution {dprop} | R Documentation |
Compute the distributional properties of the Burr XII distribution
Description
Compute the first four ordinary moments, central moments, mean, and variance, Pearson's coefficient of skewness and kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Burr XII distribution.
Usage
d_burr(k, c)
Arguments
k |
The strictly positive shape parameter of the Burr XII distribution ( |
c |
The strictly positive shape parameter of the Burr XII distribution ( |
Details
The following is the probability density function of the Burr XII distribution:
f(x)=kcx^{c-1}\left(1+x^{c}\right)^{-k-1},
where x > 0
, c > 0
and k > 0
.
Value
d_burr gives the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the Burr XII distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Rodriguez, R. N. (1977). A guide to the Burr type XII distributions. Biometrika, 64(1), 129-134.
Zimmer, W. J., Keats, J. B., & Wang, F. K. (1998). The Burr XII distribution in reliability analysis. Journal of Quality Technology, 30(4), 386-394.
See Also
Examples
d_burr(2,10)