Beta exponential distribution {dprop} | R Documentation |
Compute the distributional properties of the beta exponential distribution
Description
Compute the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the beta exponential distribution.
Usage
d_bexp(lambda, alpha, beta)
Arguments
lambda |
The strictly positive scale parameter of the exponential distribution ( |
alpha |
The strictly positive shape parameter of the beta distribution ( |
beta |
The strictly positive shape parameter of the beta distribution ( |
Details
The following is the probability density function of the beta exponential distribution:
f(x)=\frac{\lambda e^{-\beta\lambda x}}{B(\alpha,\beta)}\left(1-e^{-\lambda x}\right)^{\alpha-1},
where x > 0
, \alpha > 0
, \beta > 0
and \lambda > 0
.
Value
d_bexp gives the first four ordinary moments, central moments, mean, variance, Pearson's coefficient of skewness, kurtosis, coefficient of variation, median and quartile deviation based on the selected parametric values of the beta exponential distribution.
Author(s)
Muhammad Imran.
R implementation and documentation: Muhammad Imran imranshakoor84@yahoo.com.
References
Nadarajah, S., & Kotz, S. (2006). The beta exponential distribution. Reliability Engineering & System Safety, 91(6), 689-697.
See Also
Examples
d_bexp(1,1,0.2)