double.truncation-package {double.truncation} | R Documentation |
Analysis of Doubly-Truncated Data
Description
Likelihood-based inference methods with doubly-truncated data are developed under various models. Nonparametric models are based on Efron and Petrosian (1999) <doi:10.1080/01621459.1999.10474187> and Emura, Konno, and Michimae (2015) <doi:10.1007/s10985-014-9297-5>. Parametric models from the special exponential family (SEF) are based on Hu and Emura (2015) <doi:10.1007/s00180-015-0564-z> and Emura, Hu and Konno (2017) <doi:10.1007/s00362-015-0730-y>. The parametric location-scale models are based on Dorre et al. (2020) <doi:10.1007/s00180-020-01027-6>.
Details
Details are seen from the references.
Author(s)
Takeshi Emura, Ya-Hsuan Hu, Chung-Yan Huang Maintainer: Takeshi Emura <takeshiemura@gmail.com>
References
Dorre A, Emura T (2019) Analysis of Doubly Truncated Data, An Introduction, JSS Research Series in Statistics, Springer
Dorre A, Huang CY, Tseng YK, Emura T (2020) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6
Efron B, Petrosian V (1999). Nonparametric methods for doubly truncated data. J Am Stat Assoc 94: 824-834
Emura T, Konno Y, Michimae H (2015). Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation. Lifetime Data Analysis 21: 397-418
Emura T, Hu YH, Konno Y (2017) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Stat Pap 58 (3): 877-909
Hu YH, Emura T (2015) Maximum likelihood estimation for a special exponential family under random double-truncation, Computation Stat 30 (4): 1199-229