PMLE.loglogistic {double.truncation} | R Documentation |
Parametric Inference for the log-logistic model
Description
Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other qnantities.
Usage
PMLE.loglogistic(u.trunc, y.trunc, v.trunc,epsilon = 1e-5,D1=2,D2=2,d1=2,d2=2)
Arguments
u.trunc |
lower truncation limit |
y.trunc |
variable of interest |
v.trunc |
upper truncation limit |
epsilon |
error tolerance for Newton-Raphson |
D1 |
Randomize the intial value if |mu_h-mu_h+1|>D1 |
D2 |
Randomize the intial value if |sigma_h-sigma_h+1|>D2 |
d1 |
U(-d1,d1) is added to the intial value of mu |
d2 |
U(-d2,d2) is added to the intial value of sigma |
Details
Details are seen from the references.
Value
eta |
estimates |
SE |
standard errors |
convergence |
Log-likelihood, degree of freedom, AIC, the number of iterations |
Score |
score vector at the converged value |
Hessian |
Hessian matrix at the converged value |
Author(s)
Takeshi Emura
References
Dorre A, Huang CY, Tseng YK, Emura T (2020-) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6
Examples
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
PMLE.loglogistic(u.trunc,y.trunc,v.trunc)