PMLE.Weibull {double.truncation} | R Documentation |
Parametric Inference for the Weibull model
Description
Maximum likelihood estimates and their standard errors (SEs) are computed. Also computed are the likelihood value, AIC, and other qnantities.
Usage
PMLE.Weibull(u.trunc, y.trunc, v.trunc,epsilon = 1e-5,D1=2,D2=2,d1=2,d2=2)
Arguments
u.trunc |
lower truncation limit |
y.trunc |
variable of interest |
v.trunc |
upper truncation limit |
epsilon |
error tolerance for Newton-Raphson |
D1 |
Randomize the intial value if |mu_h-mu_h+1|>D1 |
D2 |
Randomize the intial value if |sigma_h-sigma_h+1|>D2 |
d1 |
U(-d1,d1) is added to the intial value of mu |
d2 |
U(-d2,d2) is added to the intial value of sigma |
Details
Details are seen from the references.
Value
eta |
estimates |
SE |
standard errors |
convergence |
Log-likelihood, degree of freedom, AIC, the number of iterations |
Score |
score vector at the converged value |
Hessian |
Hessian matrix at the converged value |
Author(s)
Takeshi Emura
References
Dorre A, Huang CY, Tseng YK, Emura T (2020) Likelihood-based analysis of doubly-truncated data under the location-scale and AFT model, Computation Stat, DOI:10.1007/s00180-020-01027-6
Examples
## A data example from Efron and Petrosian (1999) ##
y.trunc=c(0.75, 1.25, 1.50, 1.05, 2.40, 2.50, 2.25)
u.trunc=c(0.4, 0.8, 0.0, 0.3, 1.1, 2.3, 1.3)
v.trunc=c(2.0, 1.8, 2.3, 1.4, 3.0, 3.4, 2.6)
PMLE.Weibull(u.trunc,y.trunc,v.trunc)