| numDerivLogf {docopulae} | R Documentation |
Build Derivative Function for Log f
Description
numDerivLogf/numDeriv2Logf builds a function that evaluates to the first/second derivative of log(f(y, theta, ...)) with respect to theta[[i]]/theta[[i]] and theta[[j]].
Usage
numDerivLogf(f, isLogf = FALSE, logZero = .Machine$double.xmin,
logInf = .Machine$double.xmax/2, method = "Richardson",
side = NULL, method.args = list())
numDeriv2Logf(f, isLogf = FALSE, logZero = .Machine$double.xmin,
logInf = .Machine$double.xmax/2, method = "Richardson",
method.args = list())
Arguments
f |
|
isLogf |
set to |
logZero |
the value |
logInf |
the value |
method, side, method.args |
Details
numDeriv produces NaNs if the log evaluates to (negative) Inf so you may want to specify logZero and logInf.
numDerivLogf passes method, side and method.args directly to numDeriv::grad.
numDeriv2Logf duplicates the internals of numDeriv::hessian to gain speed.
The defaults for method.args are list(eps=1e-4, d=0.1, zero.tol=sqrt(.Machine$double.eps/7e-7), r=4, v=2).
Value
numDerivLogf returns function(y, theta, i, ...) which evaluates to the first derivative of log(f(y, theta, ...)) with respect to theta[[i]].
numDeriv2Logf returns function(y, theta, i, j, ...) which evaluates to the second derivative of log(f(y, theta, ...)) with respect to theta[[i]] and theta[[j]].
See Also
grad and hessian in package numDeriv, buildf, DerivLogf, fisherI
Examples
## see examples for param