dobin {dobin} | R Documentation |
Computes a set of basis vectors for outlier detection.
Description
This function computes a set of basis vectors suitable for outlier detection.
Usage
dobin(xx, frac = 0.95, norm = 1, k = NULL)
Arguments
xx |
The input data in a dataframe, matrix or tibble format. |
frac |
The cut-off quantile for |
norm |
The normalization technique. Default is Min-Max, which normalizes each column to values between 0 and 1. |
k |
Parameter |
Value
A list with the following components:
rotation |
The basis vectors suitable for outlier detection. |
coords |
The dobin coordinates of the data |
Yspace |
The The associated |
Ypairs |
The pairs in |
zerosdcols |
Columns in |
Examples
# A bimodal distribution in six dimensions, with 5 outliers in the middle.
set.seed(1)
x2 <- rnorm(405)
x3 <- rnorm(405)
x4 <- rnorm(405)
x5 <- rnorm(405)
x6 <- rnorm(405)
x1_1 <- rnorm(mean = 5, 400)
mu2 <- 0
x1_2 <- rnorm(5, mean=mu2, sd=0.2)
x1 <- c(x1_1, x1_2)
X1 <- cbind(x1,x2,x3,x4,x5,x6)
X2 <- cbind(-1*x1_1,x2[1:400],x3[1:400],x4[1:400],x5[1:400],x6[1:400])
X <- rbind(X1, X2)
labs <- c(rep(0,400), rep(1,5), rep(0,400))
dob <- dobin(X)
autoplot(dob)