unsupMI {doMIsaul} | R Documentation |
Unsupervised clustering for multiply imputed datasets using
MultiCons()
consensus (Faucheux et al. 2021
procedure)
unsupMI(
Impute = FALSE,
Impute.m = 5,
cens.data.lod = NULL,
cens.standards = NULL,
cens.mice.log = 10,
censsurv.var.log = NULL,
censsurv.maxit = 10,
data,
log.data = FALSE,
algo = "km",
k.crit = "ch",
comb.cons = FALSE,
plot.cons = FALSE,
return.detail = FALSE,
not.to.use = c("time", "status"),
cleanup.partition = TRUE,
min.cluster.size = 10,
level.order = NULL,
Unclassified = "Unclassified"
)
Impute |
Default is |
Impute.m |
Used only if Impute is not |
cens.data.lod |
passed to |
cens.standards |
passed to |
cens.mice.log |
passed to |
censsurv.var.log |
for |
censsurv.maxit |
for |
data |
Data, in the form of a list of data.frame(s). The list should be
one length 1 if data are complete or if Impute is not |
log.data |
logical. Should all columns of the dataset be logged before applying clustering algorithms? |
algo |
vector of strings: name of clustering algorithms to use (use
" |
k.crit |
string. Criterion to select the optimal number of clusters (for
each imputed dataset). Use " |
comb.cons |
logical. Forced to |
plot.cons |
logical. Use |
return.detail |
logical. Should the detail of imputation specific partition and the imputed data be returned, in the supplement to the final consensus partition? |
not.to.use |
vector of strings : names of the columns that should be discarded for the learning step. |
cleanup.partition |
should the partition be trimmed of small clusters. (The consensus may generate small clusters of observations for which there is no consensus on the cluster assignation) |
min.cluster.size |
if |
level.order |
if |
Unclassified |
if |
if length(algo)>1
a vector of final cluster ID ; if
length(algo)>1
a data.frame with each column being the final cluster
ID for the corresponding algorithm. Or if return.detail == TRUE
, a
list containing Consensus
: the final cluster ID (or data.frame),
Detail
: the clusters obtained for each imputed dataset,
Imputed.data
a list containing the imputed datasets.
### With imputation included
data(cancer, package = "survival")
cancer$status <- cancer$status - 1
res.0 <- unsupMI(data = list(cancer), Impute = "MImpute_surv",
cleanup.partition = FALSE)
### With imputation not included
## 1 imputation
cancer.imp <- MImpute_surv(cancer, 3)
## 2 learning
res <- unsupMI(data = cancer.imp, cleanup.partition = FALSE)
summary(factor(res))
res.1 <- unsupMI(data = cancer.imp)
summary(factor(res.1))
## 2.bis learning with several algorithms
res.2 <- unsupMI(data = cancer.imp, algo = c("km", "hc"), comb.cons = TRUE,
plot.cons = TRUE)