plot_MIpca {doMIsaul} | R Documentation |
plot_MIpca()
plots only mean value while plot_MIpca_all()
plots all values for the selected observations.
plot_MIpca(
data.list,
obs.sel,
color.var = NULL,
pca.varsel = NULL,
pc.sel = c(1, 2)
)
plot_MIpca_all(
data.list,
obs.sel,
pca.varsel = NULL,
color.var = NULL,
pc.sel = c(1, 2),
alpha = 0.4
)
data.list |
The list of the imputed datasets. |
obs.sel |
The selection of observations to highlight. If |
color.var |
Either |
pca.varsel |
optional. A vector of strings containing the names of the
variables to use for the PCA. If |
pc.sel |
Numeric vector of size 2 containing the indexes of the principal components to plot. Default is PC1 and PC2. |
alpha |
Transparency level for plotting the point of the selected observations. |
A ggplot
object.
data(cancer, package = "survival")
cancer.imp <- MImpute(cancer[, -c(1:3)], 4)
plot_MIpca(cancer.imp, 1:10,
pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))
plot_MIpca(cancer.imp, obs.sel = NULL, color.var = factor(cancer$status),
pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))
data(cancer, package = "survival")
cancer.imp <- MImpute(cancer[, -c(1:3)], 6)
plot_MIpca_all(cancer.imp, 1:10,
pca.varsel = c("age", "sex", "ph.ecog", "meal.cal", "wt.loss"))