| splitt_kurtosis {dng} | R Documentation | 
Moments of the split-t distribution
Description
Computing the mean, variance, skewness and kurtosis for the split student-t distribution.
Usage
splitt_kurtosis(df, phi, lmd)
splitt_mean(mu, df, phi, lmd)
splitt_skewness(df, phi, lmd)
splitt_var(df, phi, lmd)
Arguments
| df | degrees of freedom (> 0, can be non-integer). df = Inf is allowed. | 
| phi | vector of scale parameters (> 0). | 
| lmd | vector of skewness parameters (> 0). If is 1, reduced to symmetric student t distribution. | 
| mu | vector of location parameter. (The mode of the density) | 
Value
splitt_mean gives the mean. splitt_var gives the
variance. splitt_skewness gives the skewness. splitt_kurtosis
gives the kurtosis. (splitt_mean,
splitt_var,splitt_skeness and splitt_kurtosis are all
vectors.)
Invalid arguments will result in return value NaN, with a warning.
Functions
-  splitt_kurtosis: Kurtosis for the split-t distribution.
-  splitt_skewness: Skewness for the split-t distribution.
-  splitt_var: Variance for the split-t distribution.
Author(s)
Feng Li, Jiayue Zeng
References
Li, F., Villani, M., & Kohn, R. (2010). Flexible modeling of conditional distributions using smooth mixtures of asymmetric student t densities. Journal of Statistical Planning & Inference, 140(12), 3638-3654.
See Also
dsplitt(), psplitt(),
qsplitt() and rsplitt() for the split-t
distribution.
Examples
mu <- c(0,1,2)
df <- rep(10,3)
phi <- c(0.5,1,2)
lmd <- c(1,2,3)
mean0 <- splitt_mean(mu, df, phi, lmd)
var0 <- splitt_var(df, phi, lmd)
skewness0 <- splitt_skewness(df, phi, lmd)
kurtosis0 <- splitt_kurtosis(df, phi, lmd)