AUC_comparison {dmetatools} | R Documentation |
Bootstrap test for the difference of AUCs of summary ROC curves for multiple diagnostic tests
Description
Calculating the difference of AUCs of summary ROC curves (dAUC
) and its confidence interval, and the p-value for the test of "dAUC=0
" by parametric bootstrap.
Usage
AUC_comparison(TP1, FP1, FN1, TN1, TP2, FP2, FN2, TN2, B=2000, alpha=0.05)
Arguments
TP1 |
A vector of the number of true positives (TP) of test 1 |
FP1 |
A vector of the number of false positives (FP) of test 1 |
FN1 |
A vector of the number of false negatives (FN) of test 1 |
TN1 |
A vector of the number of true negatives (TN) of test 1 |
TP2 |
A vector of the number of true positives (TP) of test 2 |
FP2 |
A vector of the number of false positives (FP) of test 2 |
FN2 |
A vector of the number of false negatives (FN) of test 2 |
TN2 |
A vector of the number of true negatives (TN) of test 2 |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The significance level (default: 0.05) |
Value
The AUCs of the summary ROC curves and their confidence intervals are calculated.
Also, the difference of the AUCs (dAUC
) and its confidence interval, and the p-value for the test of "dAUC=0
" are provided.
-
AUC1
: The AUC of the summary ROC curve for test 1. -
AUC1_CI
: The 95% confidence interval for the AUC of the summary ROC curve for test 1 (the confidence level can be changed byalpha
). -
AUC2
: The AUC of the summary ROC curve for test 2. -
AUC2_CI
: The 95% confidence interval for the AUC of the summary ROC curve for test 2 (the confidence level can be changed byalpha
). -
dAUC
: The difference of the AUC1 and AUC2. -
dAUC_CI
: The 95% confidence interval fordAUC
(the confidence level can be changed byalpha
). -
pvalue
: The p-value of the test ofdAUC=0
.
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(cervical)
CT <- cervical[cervical$method==1,]
LAG <- cervical[cervical$method==2,]
MRI <- cervical[cervical$method==3,]
fit1 <- reitsma(CT) # DTA meta-analysis using the Reitsma model
summary(fit1)
fit2 <- reitsma(LAG)
summary(fit2)
fit3 <- reitsma(MRI)
summary(fit3)
plot(fit1) # Plot the SROC curves
lines(sroc(fit2), lty=2, col="blue")
ROCellipse(fit2, lty=2, pch=2, add=TRUE, col="blue")
lines(sroc(fit3), lty=3, col="red")
ROCellipse(fit3, lty=3, pch=3, add=TRUE, col="red")
points(fpr(CT), sens(CT), cex = .5)
points(fpr(LAG), sens(LAG), pch = 2, cex = 0.5, col="blue")
points(fpr(MRI), sens(MRI), pch = 3, cex = 0.5, col="red")
legend("bottomright", c("CT", "LAG", "MRI"), pch = 1:3, lty = 1:3, col=c("black","blue","red"))
AUC_comparison(CT$TP,CT$FP,CT$FN,CT$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,LAG$TP,LAG$FP,LAG$FN,LAG$TN,B=5)
AUC_comparison(MRI$TP,MRI$FP,MRI$FN,MRI$TN,CT$TP,CT$FP,CT$FN,CT$TN,B=5)
# These are example commands for illustration. B should be >= 1000.