AUC_IF {dmetatools} | R Documentation |
Influence diagnostics based on the AUC of summary ROC curve
Description
Influence diagnostics based on AUC of the summary ROC curve by leave-one-out analysis. The threshold to determine influential outlying study is computed by parametric bootstrap.
Usage
AUC_IF(TP, FP, FN, TN, B=2000, alpha=0.95)
Arguments
TP |
A vector of the number of true positives (TP) |
FP |
A vector of the number of false positives (FP) |
FN |
A vector of the number of false negatives (FN) |
TN |
A vector of the number of true negatives (TN) |
B |
The number of bootstrap resampling (default: 2000) |
alpha |
The error level to be calculated for the bootstrap interval of |
Value
Influence diagnostic statistics based on the AUC of the summary ROC curve. The output is sorted by the absolute size of deltaAUC
.
-
AUC
: The AUC of the summary ROC curve. -
id
: identification number. -
AUC(-i)
: The AUC estimate ifi
th study is excluded. -
deltaAUC
: The difference of AUC estimates for all study and for the subpopulation thati
th study is excluded. -
Q1
: Default 2.5th percentile of the bootstrap distribution ofdeltaAUC
(can be changed byalpha
). -
Q2
: Default 97.5th percentile of the bootstrap distribution ofdeltaAUC
(can be changed byalpha
).
Author(s)
Hisashi Noma <noma@ism.ac.jp>
References
Noma, H., Matsushima, Y., and Ishii, R. (2021). Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Communications in Statistics: Case Studies and Data Analysis 7: 344-358. doi:10.1080/23737484.2021.1894408
Examples
require(mada)
data(asthma)
fit1 <- reitsma(asthma) # DTA analysis using the Reitsma model
summary(fit1)
plot(fit1) # Plot the SROC curves
points(fpr(asthma), sens(asthma), cex = .5)
attach(asthma)
AUC_IF(TP, FP, FN, TN, B=2) # Influential analysis based on the AUC
detach(asthma)
# This is an example command for illustration. B should be >= 1000.