dmbc_get_ml {dmbc} | R Documentation |
Extractor function for a fitted DMBC model.
Description
dmbc_get_ml()
is an extractor function for extracting the
maximum likelihood estimates of the parameters for a fitted DMBC model.
Usage
dmbc_get_ml(res, chain = 1)
Arguments
res |
An object of class |
chain |
A length-one numeric vector indicating the MCMC chain number to use. |
Value
A named list
with the following elements:
z
:array of latent coordinates posterior mean estimates
alpha
:numeric vector of alpha posterior mean estimates
eta
:numeric vector of eta posterior mean estimates
sigma2
:numeric vector of sigma2 posterior mean estimates
lambda
:numeric vector of lambda posterior mean estimates
prob
:numeric matrix of probability posterior mean estimates
cluster
:numeric vector of cluster membership posterior mean estimates
loglik
:length-one numeric vector of the maximum log-likelihood value
chain
:length-one numeric vector of the MCMC chain number used
Author(s)
Sergio Venturini sergio.venturini@unicatt.it
References
Venturini, S., Piccarreta, R. (2021), "A Bayesian Approach for Model-Based
Clustering of Several Binary Dissimilarity Matrices: the dmbc
Package in R
", Journal of Statistical Software, 100, 16, 1–35, <10.18637/jss.v100.i16>.
See Also
dmbc_data
for a description of the data format.
dmbc_fit_list
for a description of the elements
included in the returned object.
Examples
## Not run:
data(simdiss, package = "dmbc")
G <- 3
p <- 2
prm.prop <- list(z = 1.5, alpha = .75)
burnin <- 2000
nsim <- 1000
seed <- 2301
set.seed(seed)
control <- list(burnin = burnin, nsim = nsim, z.prop = prm.prop[["z"]],
alpha.prop = prm.prop[["alpha"]], random.start = TRUE, verbose = TRUE,
nchains = 2, thin = 10, store.burnin = TRUE, threads = 2,
parallel = "snow")
sim.dmbc <- dmbc(simdiss, p, G, control)
dmbc_get_ml(sim.dmbc, chain = 1)
## End(Not run)